Skip to main content
Log in

Repeat space theory applied to carbon nanotubes and related molecular networks. II

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The present article is part II of a series devoted to extending the Repeat Space Theory (RST) to apply to carbon nanotubes and related molecular networks. In this part II, three new versions of the Asymptotic Linearity Theorems, which are central in the RST and played a key role in part I of this series, have been established in a new theoretical framework of the generalized repeat space \({\fancyscript {X}}_{\rm r}(q,d)\). These new versions of theorems, which prove the Fukui conjecture and solve additivity and molecular network problems in a context broader than before, unite the present series and the seven paper series of structural analysis of chemical network systems published in the International Journal of Quantum Chemistry. Along with the Fukui conjecture, which is the guiding conjecture of the RST, the research target of mathematical and computational modeling called the ‘virtual nanotube tip RST atomic force microscopy’ has been set up in connection with a variety of modern microscopy useful for nanoscience and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arimoto S., Fukui K., Taylor K.F., Mezey P.G. (1995). Int. J. Quantum Chem. 53:375

    Article  CAS  Google Scholar 

  2. Arimoto S., Fukui K., Taylor K.F., Mezey P.G. (1995). Int. J. Quantum Chem. 53:387

    Article  CAS  Google Scholar 

  3. Arimoto S., Fukui K., Ohno H., Taylor K.F., Mezey P.G. (1997). Int. J. Quantum Chem. 63:149

    Article  CAS  Google Scholar 

  4. S. Arimoto, K. Fukui, K.F. Taylor and P.G. Mezey, Int. J. Quantum Chem. 67 (1998) 57.

    Google Scholar 

  5. S. Arimoto, K. Fukui, P. Zizler, K.F. Taylor and P.G. Mezey, Int. J. Quantum Chem. 74 (1999) 633.

    Google Scholar 

  6. S. Arimoto, M. Spivakovsky, H. Ohno, P. Zizler, K.F. Taylor, T. Yamabe and P.G. Mezey, Int. J. Quantum Chem. 84 (2001) 389.

    Google Scholar 

  7. S. Arimoto, M. Spivakovsky, H. Ohno, P. Zizler, R.A. Zuidwijk, K.F. Taylor, T. Yamabe and P.G. Mezey, Int. J. Quantum Chem. 97 (2004) 765.

    Google Scholar 

  8. S. Arimoto and K. Fukui, Fundamental Mathematical Chemistry, Interdisciplinary Research in Fundamental Mathematical Chemistry and Generalized Repeat Space, IFC Bulletin 1998, pp. 7–13. (PDF Full Text downloadable at: http://homepage.usask.ca/∼sha436/)

  9. S. Arimoto, J. Math. Chem. (2006), in press: (Online version available at the following Springer Online Publication web site.) http://dx.doi.org/10.1007/s10910-006-9064-2

  10. S. Arimoto, J. Math. Chem. 34 (2003) 259.

    Google Scholar 

  11. D.J. Klein, J.L. Palacios, M. Randić and N. Trinajstić, J. Chem. Inf. Comput. Sci. 44 (2004) 1521.

    Google Scholar 

  12. A. Tang, Y. Kiang, G. Yan and S. Tai, Graph Theoretical Molecular Orbitals (Science Press, Beijing, 1986).

  13. Y. Jiang, A. Tang and R. Hoffmann, Theor. Chem. Acta 66 (1984) 183.

    Google Scholar 

  14. A. Graovac, I. Gutman and N. Trinajstic′ , Topological Approach to the Chemistry of Conjugated Molecules (Springer, Berlin, 1977).

  15. A.T. Balaban, Chemical Applications of Graph Theory (Academic Press, New York, 1976).

  16. P. Zizler, R.A. Zuidwijk, K.F. Taylor and S. Arimoto, SIAM J. Matrix Anal. Appl. 24 (2002) 59.

    Google Scholar 

  17. A. Böttcher and S.M. Grudsky, Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis (Birkhäuser, Basel, 2000).

  18. A. Böttcher and S.M. Grudsky, Spectral Properties of Banded Toeplitz Matrices (SIAM, Philadelphia, 2005).

  19. Arimoto S., Spivakovsky M., Taylor K.F., Mezey P.G. (2005). J. Math. Chem. 37:75

    Article  CAS  Google Scholar 

  20. Arimoto S., Hall G.G. (1992). Int. J. Quantum Chem. 46:612

    Google Scholar 

  21. Iijima S. (1991). Nature 354:56

    Article  CAS  Google Scholar 

  22. K. Tanaka, T. Yamabe and K. Fukui, The Science and Technology of Carbon Nanotubes (Elsevier, Amsterdam 1999).

  23. R. Saito, G. Dresselhaus and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

  24. A. Srivastava, O.N. Srivastava, S. Talapatra, R. Vajitai and P.M. Ajayan, Nat. Mater. 3 (2004) 610.

    Google Scholar 

  25. S. Arimoto, M. Spivakovsky, K.F. Taylor and P.G. Mezey, J. Math. Chem. 37 (2005) 171.

    Google Scholar 

  26. P.T. Fiori and M.F. Paige, Anal. Bioanal. Chem. 380 (2004) 339.

    Google Scholar 

  27. M.F. Paige and M.C Goh, Micron. 32 (2001) 355.

  28. T.C. Sutherland, Y.-T. Long, R. Stefurreac, I. Bediako-Amoa, H.-B. Kraatz and J.S. Lee, Nano Lett. 4 (2004) 1273.

  29. K. A. Worsley, K. R. Moonoosawmy and P. Kruse, Nano. lett. 4 (2004) 1541.

    Google Scholar 

  30. L. S. Cahill, Z. Yao, A. Adronov, J. Penner, K. R. Moonoosawmy, P. Kruse and G. R. Goward, J. Phys. Chem. B 108 (2004) 11412.

    Google Scholar 

  31. Malac M., Egerton R., Freeman M., Lau J., Zhu Y., Wu L. (2005). J. Vac. Sci. Technol. B 23(1):271

    Article  CAS  Google Scholar 

  32. Malac M., Egerton R. (2001). Nanotechnology 12:11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Arimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arimoto, S. Repeat space theory applied to carbon nanotubes and related molecular networks. II. J Math Chem 43, 658–673 (2008). https://doi.org/10.1007/s10910-006-9218-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9218-2

Keywords

AMS subject classification

Navigation