Skip to main content
Log in

Zero-Temperature Properties of a Strongly Interacting Superfluid Fermi Gas in the BCS–BEC Crossover Region

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate thermodynamic properties and effects of quantum fluctuations in the Bardeen–Cooper–Schrieffer (BCS)–Bose–Einstein condensation (BEC) crossover region of a superfluid Fermi gas in the low-temperature limit. Including strong-coupling corrections within the framework of an extended T-matrix approximation, we numerically compute the isothermal compressibility \(\chi _n\). While quantum fluctuation effects on \(\chi _n\) in the strong-coupling BEC regime are explained by the quantum depletion due to a repulsive interaction between tightly bound molecules, effects of self-energy shift on the Fermi chemical potential are found to enhance \(\chi _n\) in the weak-coupling BCS region. We also show that the calculated \(\chi _n\) agrees well with the recent experiment on a \(^6\)Li Fermi gas done from the weak-coupling region to the unitarity limit. Our result would be useful for the study of many-body quantum corrections in the BCS–BEC crossover region of a strongly interacting Fermi superfluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  2. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  3. D.M. Eagles, Phys. Rev. 186, 456 (1969)

    Article  ADS  Google Scholar 

  4. A.J. Leggett, in Diatomic Molecules and Cooper Pairs, ed. by A. Pekalski, J. Przystawa. Modern Trends in the Theory of Condensed Matter (Springer, Berlin, 1980)

  5. P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  6. Y. Ohashi, A. Griffin, Phys. Rev. Lett. 89, 130402 (2002)

    Article  ADS  Google Scholar 

  7. C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  Google Scholar 

  8. M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004)

    Article  ADS  Google Scholar 

  9. M. Horikoshi, S. Nakajima, M. Ueda, T. Mukaiyama, Science 327, 442 (2010)

    Article  ADS  Google Scholar 

  10. S. Nascimbène, N. Navon, K.J. Jiang, F. Chevy, C. Salomon, Nature 463, 1057 (2010)

    Article  ADS  Google Scholar 

  11. N. Navon, S. Nascimbène, F. Chevy, C. Salomon, Science 328, 729 (2010)

    Article  ADS  Google Scholar 

  12. C. Sanner, E.J. Su, A. Keshet, W. Huang, J. Gillen, R. Gommers, W. Ketterle, Phys. Rev. Lett. 106, 010402 (2011)

    Article  ADS  Google Scholar 

  13. M.J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwierlein, Science 335, 563 (2012)

    Article  ADS  Google Scholar 

  14. A. Gezerlis, J. Carlson, Phys. Rev. C 77, 032801(R) (2008)

    Article  ADS  Google Scholar 

  15. D.J. Dean, M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607 (2003)

    Article  ADS  Google Scholar 

  16. M. Horikoshi, M. Koashi, H. Tajima, Y. Ohashi, M. Kuwata-Gonokami, in preparation

  17. H. Hu, X.-J. Liu, P.D. Drummond, Europhys. Lett. 74, 574 (2006)

    Article  ADS  Google Scholar 

  18. R. Haussmann, W. Rantner, S. Cerrito, W. Zwerger, Phys. Rev. A 75, 023610 (2007)

    Article  ADS  Google Scholar 

  19. F. Palestini, A. Perali, P. Pieri, G.C. Strinati, Phys. Rev. A 82, 021605(R) (2010)

    Article  ADS  Google Scholar 

  20. A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. 78, 023625 (2008)

    Article  ADS  Google Scholar 

  21. T. Kashimura, R. Watanabe, Y. Ohashi, Phys. Rev. A 86, 043622 (2012)

    Article  ADS  Google Scholar 

  22. R. Hanai, T. Kashimura, R. Watanabe, D. Inotani, Y. Ohashi, Phys. Rev. A 88, 053621 (2013)

    Article  ADS  Google Scholar 

  23. T. Kashimura, R. Watanabe, Y. Ohashi, Phys. Rev. A 89, 013618 (2014)

    Article  ADS  Google Scholar 

  24. H. Tajima, T. Kashimura, R. Hanai, R. Watanabe, Y. Ohashi, Phys. Rev. A 89, 033617 (2014)

    Article  ADS  Google Scholar 

  25. H. Tajima, R. Hanai, Y. Ohashi, Phys. Rev. A 93, 013610 (2016)

    Article  ADS  Google Scholar 

  26. A. Schirotzek, Y. Shin, C.H. Schunck, W. Ketterle, Phys. Rev. Lett. 101, 140403 (2008)

    Article  ADS  Google Scholar 

  27. J.J. Kinnunen, Phys. Rev. A 85, 012701 (2012)

    Article  ADS  Google Scholar 

  28. Y. Sagi, T.E. Drake, R. Paudel, R. Chapurin, D.S. Jin, Phys. Rev. Lett. 114, 075301 (2015)

    Article  ADS  Google Scholar 

  29. Y. Ohashi, A. Griffin, Phys. Rev. A 67, 063612 (2003)

    Article  ADS  Google Scholar 

  30. R. Watanabe, S. Tsuchiya, Y. Ohashi, Phys. Rev. A 82, 043630 (2010)

    Article  ADS  Google Scholar 

  31. J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)

    Article  ADS  Google Scholar 

  32. D.S. Petrov, C. Salomon, G.V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004)

    Article  ADS  Google Scholar 

  33. K. Seo, C.A.R. Sá de Melo, Compressibility and spin susceptibility in the evolution from BCS to BEC superfluidsar (2011). arXiv:1105.4365v1

Download references

Acknowledgements

We thanks to M. Matsumoto for useful discussions. This work was supported by KiPAS project in Keio University. H.T. and R.H. were supported by a grant-in-aid for JSPS fellows. D.I. was supported by grant-in-aid for Young Scientists (B) from JSPS in Japan (No.16K17773). M.H. was supported by grant-in-aid for Scientific Research on Innovative Areas (No. 24105006) and grant-in-aid for Young Scientists (A) from JSPS in Japan (No. 23684033). Y.O. was supported by grant-in-aid for Scientific Research from MEXT and JSPS in Japan (No.15H00840,No.15K00178,No.16K05503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajima, H., van Wyk, P., Hanai, R. et al. Zero-Temperature Properties of a Strongly Interacting Superfluid Fermi Gas in the BCS–BEC Crossover Region. J Low Temp Phys 187, 677–684 (2017). https://doi.org/10.1007/s10909-016-1691-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1691-9

Keywords

Navigation