Skip to main content
Log in

Universality in Cuprates: A Gauge Approach

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In high-\(T_\mathrm{c}\) cuprates, many quantities exhibit a non-Fermi liquid universality hinting at a very peculiar structure of the underlying pairing mechanism for superconductivity: in this work, we focus on the universality for the in-plane resistivity and the superfluid density. We outline the previously developed spin–charge gauge approach to superconductivity in hole-doped cuprates: we decompose the hole of the \(t-t'-J\) model for the \(\mathrm {Cu}\mathrm {O}_2\) planes as the product of a spinful, chargeless gapped spinon and a spinless, charged holon with Fermi surface. Each one of these particle excitations is bound to a statistical gauge flux, allowing one to optimize their statistics. We show that this model allows for a natural interpretation of the universality: within this approach, under suitable conditions, the spinonic and holonic contributions to a response function sum up according to the Ioffe–Larkin rule. We argue that, if the spinonic contribution dominates, then one should expect strongly non-Fermi-liquid-like universality, due to the insensitivity of spinons to Fermi surface details. The in-plane resistivity and superfluid density are indeed dominated by spinons in the underdoped region. We theoretically derive these quantities, discussing their universal behaviours and comparing them with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B. Wuyts, V.V. Moshchalkov, Y. Bruynseraede, Phys. Rev. B 53, 9418 (1996)

    Article  ADS  Google Scholar 

  2. L. Trappeniers et al., J. Low Temp. Phys. 117, 681 (1999)

    Article  ADS  Google Scholar 

  3. H.G. Luo, Y.H. Su, T. Xiang, Phys. Rev. B 77, 014529 (2008)

    Article  ADS  Google Scholar 

  4. W.N. Hardy, S. Kamal, D. Bonn, The gap symmetry and fluctuations in high-Tc superconductors (Plenum Press, New York, 1998)

  5. P.A. Marchetti, G. Bighin, Europhys. Lett. 110, 37001 (2015)

    Article  ADS  Google Scholar 

  6. P.A. Marchetti, Z.B. Su, L. Yu, J. Phys. Condens. Matter B 19, 125209 (2007)

    Article  ADS  Google Scholar 

  7. P.A. Marchetti, F. Ye, Z.B. Su, L. Yu, Phys. Rev. B 84, 214525 (2011)

    Article  ADS  Google Scholar 

  8. J. Frohlich, P.A. Marchetti, Phys. Rev. B 46, 6535 (1992)

    Article  ADS  Google Scholar 

  9. P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17–85 (2006)

    Article  ADS  Google Scholar 

  10. P.A. Marchetti, Z.B. Su, L. Yu, Phys. Rev. B 58, 5808 (1998)

    Article  ADS  Google Scholar 

  11. F. Ye, P.A. Marchetti, Z.B. Su, L. Yu, Phys. Rev. B 92, 235151 (2015)

    Article  ADS  Google Scholar 

  12. F.D.M. Haldane, Phys. Rev. Lett. 67, 937 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. P.A. Marchetti, G. Orso, Z.B. Su, L. Yu, Phys. Rev. B 71, 134510 (2005)

    Article  ADS  Google Scholar 

  14. P.A. Marchetti, L. De Leo, G. Orso, Z.B. Su, L. Yu, Phys. Rev. B 69, 024527 (2004)

    Article  ADS  Google Scholar 

  15. P.A. Marchetti, J. Supercond. Nov. Magn. 28, 735 (2015)

    Article  Google Scholar 

  16. B. Keimer et al., Phys. Rev. B 46, 14034 (1992)

    Article  ADS  Google Scholar 

  17. Y. Wang, L. Li, N.P. Ong, Phys. Rev. B 73, 024510 (2006)

    Article  ADS  Google Scholar 

  18. L. Ioffe, A. Larkin, Phys. Rev. B 39, 8988 (1989)

    Article  ADS  Google Scholar 

  19. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)

    Article  ADS  Google Scholar 

  20. P.A. Lee, N. Nagaosa, Phys. Rev. Lett. 65, 2450 (1990)

    Article  Google Scholar 

  21. P.A. Lee, N. Nagaosa, Phys. Rev. B 46, 5621 (1992)

    Article  ADS  Google Scholar 

  22. L.B. Ioffe, P.B. Wiegmann, Phys. Rev. Lett 65, 653 (1990)

    Article  ADS  Google Scholar 

  23. Y. Ando et al., Phys. Rev. Lett. 93, 267001 (2004)

    Article  ADS  Google Scholar 

  24. H. Takagi et al., Phys. Rev. Lett. 69, 2975 (1992)

    Article  ADS  Google Scholar 

  25. Z. Konstantinović, Z.Z. Li, H. Raffy, Phys. C 351, 163 (2001)

    Article  ADS  Google Scholar 

  26. N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. B 61, 11282 (2000)

    Article  ADS  Google Scholar 

  27. T. Jacobs et al., Phys. Rev. Lett. 75, 4516 (1995)

    Article  ADS  Google Scholar 

  28. C. Panagopoulos et al., Phys. Rev. B 60, 14617 (1999)

    Article  ADS  Google Scholar 

  29. P.A. Marchetti, M. Gambaccini, J. Phys. Condens. Matter 24, 475601 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

For the authors, it is a great pleasure to acknowledge F. Toigo for many illuminating discussions. P.A.M. thanks Z. B. Su, L. Yu and F. Ye for the joy of a longtime collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bighin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchetti, P.A., Bighin, G. Universality in Cuprates: A Gauge Approach. J Low Temp Phys 185, 87–101 (2016). https://doi.org/10.1007/s10909-016-1623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1623-8

Keywords

Navigation