Skip to main content
Log in

Effects of Non-stoichiometry in Eu–Ba–Cu–O Systems

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Structural, electrical, and thermal properties of a series of superconductors Eu\(_{1+x}\)Ba\(_{2-x}\)Cu\(_{3}\)O\(_{7-\delta }\) where \(x=0\), 0.03, 0.05, 0.1, and 0.2 were investigated. According to the X-ray powder diffraction at room temperature, all the samples are single phase. Eu\(_{1+x}\)Ba\(_{2-x}\)Cu\(_{3}\)O\(_{7-\delta }\) takes on an orthorhombic–tetragonal (O–T) phase transition for \(x=0.2\). Corresponding to the O–T phase transition, the superconducting critical temperature \(T_{\mathrm{c}}\) decreases rapidly with Eu content. Thermogravimetric analysis was used to investigate the total oxygen content by determining the weight loss in oxygen atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.G. Bednorz, K.A. Müller, Z. Phys, B 64, 189 (1986)

    Google Scholar 

  2. D.W. Murphy, S. Sunshine, R.B. van Dover, R.J. Cava, B. Batlogg, S.M. Zahurak, L.F. Schneemeyer, Phys. Rev. Lett. 58, 1888 (1987)

    Article  ADS  Google Scholar 

  3. D.H. Ha, S. Byon, H.S. Min, K.W. Lee, Physica C 341–348, 633–634 (2000)

    Article  Google Scholar 

  4. Y. Li et al., Physica C 402, 179–187 (2004)

    Article  ADS  Google Scholar 

  5. L. Sun, W. Li, S. Liu, T. Mertelj, X. Yao, Supercond. Sci. Technol. 22, 125008 (2009)

    Article  ADS  Google Scholar 

  6. H. Fujimoto, JOM 50(10), 16–18 (1998)

    Article  MathSciNet  Google Scholar 

  7. K. Schlesier, H. Huhtinen, P. Paturi, Supercond. Sci. Technol. 23, 055010 (2010)

    Article  ADS  Google Scholar 

  8. S.I. Yoo, N. Sakai, H. Takaichi, T. Higuchi, J. Appl. Phys. Lett. 65(5), 633–635 (1994)

    Article  ADS  Google Scholar 

  9. Y. Shiohara, M. Nakamura, T. Hirayama, Y. Ikuhara, J. Korean Phys. Soc. 31(2), 56–59 (1997)

    Google Scholar 

  10. N. Akduran, Radiat. Phys. Chem. 83, 61 (2013)

    Article  ADS  Google Scholar 

  11. A. Cigáň, J. Maňka, J. Polovková, M. Majerová, M. Kopčok, I. Driessche and V. Zrubec, J. Phys.: Conf. Ser. 97, (2008)

  12. S. Tsurumi, T. Iwata, Y.Tajima, M. Hikita, Jpn. J. Appl. Phys., 26(2), no.11, L1865–L1867, (1987)

  13. S.A. Yaacob, A.K. Yahya, M.I.M. Yusof, R. Hasham, Ceram. Int. 38(8), 6311–6319 (2012)

    Article  Google Scholar 

  14. Y. Le Page, T. Siegrist, S.A. Sunshine, L.F. Schneemeyer, D.W. Murphy, S.M. Zahurak, J.V. Waszczak, W.R. McKinnon, J.M. Tarascon, G.W. Hull, L.H. Greene, Phys. Rev. B 36(7), 3617–3621 (1987)

    Article  ADS  Google Scholar 

  15. S. Yoo, N. Sakai, H. Takaichi, T. Higuchi, M. Murakami, Appl. Phys. Lett. 65, 633 (1994)

    Article  ADS  Google Scholar 

  16. E. Goodilin, M. Limonov, A. Panfilov, N. Khasanova, A. Oka, S. Tajima, Y. Shiohara, Physica C 300, 250 (1998)

    Article  ADS  Google Scholar 

  17. M. Yoshizumi, M. Kambara, Y. Shiohara, T. Umeda, Physica C 334, 77 (2000)

    Article  ADS  Google Scholar 

  18. M. Kuznetsov, Ch. Krauns, Y. Nakamura, T. Izumi, Y. Shiohara, Physica C 357–360, 1068–1072 (2001)

    Article  Google Scholar 

  19. Y. Yamada, Ch. Krauns, M. Nakamura, M. Tagami, Y. Shiohara, J. Mater. Res. 10(7), 1601–1610 (1995)

    Article  ADS  Google Scholar 

  20. N. Egami, Y. Namikawa, T. Mizukoshi, Y. Shiohara, X. Yao, J. Crystal Growth 165, 198–201 (1996)

    Article  ADS  Google Scholar 

  21. H. Eisaki, N. Kaneko, D.L. Feng, A. Damascelli, P.K. Mang, K.M. Shen, Z.X. Shen, M. Greven, Phys. Rev. B 69, 064512 (2004)

    Article  ADS  Google Scholar 

  22. N. Hudakova, K. Knizek, J. Hejtmanek, Physica C 406, 58 (2004)

    Article  ADS  Google Scholar 

  23. A.D.M. dos Santos, G.S. Pinto, B. Ferreira, A.J.S. Machado, Physica C 354, 388 (2001)

    Article  ADS  Google Scholar 

  24. Q. Cao, K. Ruan, S. Li, X. Chen, G. Qian, L. Cao, Physica C 334, 237 (2000)

    Article  ADS  Google Scholar 

  25. S.M. Khalil, J. Phys. Chem. Solids 64, 855 (2003)

    Article  ADS  Google Scholar 

  26. X. Sun, X. Zhao, W. Wu, X. Fan, X. Li, H. Ku, Physica C 307, 7 (1998)

    Article  Google Scholar 

  27. V. Awana, S. Agarwal, R. Ray, S. Gupta, A. Narlikar, Physica C 43, 191 (1992)

    Google Scholar 

  28. M. Yilmazlar, H. Cetinkara, M. Nursoy, O. Ozturk, C. Terzioglu, Physica C 442, 101 (2006)

    Article  ADS  Google Scholar 

  29. T. Plackowski, C. Sulkowski, Z. Bukowski, D. Wlosewicz, K. Rogacki, Physica C 254(3–4), 331–341 (1995)

    Article  ADS  Google Scholar 

  30. M. Kameneva, L. Kozeeva, A. Blinov, N. Kuratieva, V. Fedorov, J. Ceram. Process. Res. 10(2), 61–65 (2009)

    Google Scholar 

  31. V. Drozd, I. Baginski, S. Nedilko, M. Mel’nikov, J. Alloys Compd. 1–2, 44–50 (2004)

    Article  Google Scholar 

  32. P. Benzi, E. Bottizzo, N. Rizzi, J. Crystal Growth 269, 625–629 (2004)

    Article  ADS  Google Scholar 

  33. Y. Cheng, Z. Chien, W. Guan, J. Supercond. 11, 693 (1998)

    Article  ADS  Google Scholar 

  34. S. Li, A. Hayri, V. Ramanujachary, M. Greenblatt, Phys. Rev. B 38, 2450 (1988)

    Article  ADS  Google Scholar 

  35. Y. Li, Y. Liu, R. Duan, X. Xiong, B. Wang, G. Cao, L. Wei, D. Zheng, Z. Zhao, J. Ross, Physica C 402, 179 (2004)

    Article  ADS  Google Scholar 

  36. A. Coats, J. Redfern, Nature 201, 68–69 (1964)

    Article  ADS  Google Scholar 

  37. N. Akduran, J. Low Temp. Phys. 168, 323–333 (2012)

    Article  ADS  Google Scholar 

  38. M. Shafer, T. Penney, B. Olson, Phys. Rev. B 36, 4047 (1987)

    Article  ADS  Google Scholar 

  39. V. Huse, V. Mote, Y. Purushotham, B. Dole, Ceramica 58, 381 (2012)

    Google Scholar 

  40. H. Akinaga, H. Katoh, K. Takita, H. Asono, K. Masuda, Jpn. J. Appl. Phys. 27, 610 (1988)

    Article  ADS  Google Scholar 

  41. M. Osorio, A. Morales, J. Rodrigo, H. Suderow, S. Vieira, Eur. J. Phys. 33, 757 (2012)

    Article  Google Scholar 

  42. M. Sandim, R. Jardim, Physica C 328, 246 (1999)

    Article  ADS  Google Scholar 

  43. C. Santos, M. Luz, B. Ferreira, A. Machado, Physica C 391, 345 (2003)

    Article  ADS  Google Scholar 

  44. J. Mannhart, P. Chaudhari, D. Dimos, C. Tsuei, T. McGuire, Phys. Rev. Lett. 61, 2476 (1988)

    Article  ADS  Google Scholar 

  45. V. Strbik, R. Adam, S. Benacka, S. Chromik, Progress in High Temp. Supercond. 30, 336 (1992)

  46. S. Tahara, S. Anlage, J. Halbritter, C. Eom, D. Fork, T. Geballe, M. Beasley, Phys. Rev. B 41, 11203 (1990)

    Article  ADS  Google Scholar 

  47. M. Gijs, R.J. Jansen, Appl. Phys. Lett. 56, 1484 (1990)

    Article  ADS  Google Scholar 

  48. E. Jones, D. Christen, J. Thompson, R. Feenstra, S. Zhu, D. Lowndes, J. Phillips, M. Siegal, J.D. Budai, Phys. Rev. B 47, 8986 (1993)

    Article  ADS  Google Scholar 

  49. E. Jones, D. Christen, J. Thompson, R. Feenstra, S. Zhu, D. Lowndes, J. Phillips, M. Siegal, J. Budai, Phys. Rev. B 47, 8986 (1993)

    Article  ADS  Google Scholar 

  50. D. Christen, C. Klabunde, J. Thompson, H. Kerchner, S. Sekula, R. Feenstra, J. Budai, Physica C 162–164, 653 (1989)

    Article  Google Scholar 

  51. G. Tome-Rosa, G. Jakob, A. Walkenhorst, M. Maul, M. Schmitt, M. Paulson, H. Adrian, Z. Phys. B 83, 221 (1991)

    Article  ADS  Google Scholar 

  52. E. Jones, D. Christen, C. Klabunde, J. Thompson, D. Norton, R. Feenstra, D. Lowndes, J. Budai, Appl. Phys. Lett. 59, 3183 (1991)

    Article  ADS  Google Scholar 

  53. P. Mikheenko, Y. Kuzovlev, Physica C 204, 229 (1993)

    Article  ADS  Google Scholar 

  54. J. Clem, B. Bumble, S. Raider, W. Gallagher, Y. Shih, Phys. Rev. B 35, 6637 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurcan Akduran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akduran, N. Effects of Non-stoichiometry in Eu–Ba–Cu–O Systems. J Low Temp Phys 181, 183–196 (2015). https://doi.org/10.1007/s10909-015-1336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1336-4

Keywords

Navigation