Skip to main content
Log in

The Cryogenic AntiCoincidence Detector Project for ATHENA+: An Overview Up to the Present Status

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

ATHENA+ is a space mission proposal for the next ESA L2-L3 slot. One of the focal plane instruments is the X-ray integral field unit (X-IFU) working in the energy range 0.3–10 keV. It is a multi-array based on TES detectors aimed at characterizing faint or diffuse sources (e.g. WHIM or galaxy outskirt). The X-IFU will be able to achieve the required sensitivity if a low background is guaranteed. The studies performed by GEANT4 simulations depict a scenario where the use of an active anticoincidence (AC) is mandatory to reduce the background expected in L2 orbit down to the goal level of 0.005 cts cm\(^{-2}\) s\(^{-1}\) keV\(^{-1}\). This is possible using a cryogenic anticoincidence (CryoAC) detector placed within a proper optimized environment surrounding the X-IFU. We propose a 2 \(\times \) 2 array of microcalorimeter detectors made by silicon absorber (each of about 1 cm\(^{2}\) and 300 \(\upmu \)m thick) and sensed by an Ir TES. In order to better understand the involved physics and optimize the performance, we have produced several samples featured by different absorber areas, TES size, and QPs Al collectors. Here we will discuss, as a review, the obtained results and the related impact to the final detector design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. http://athena2013.irap.omp.eu/WP/The_Hot_and_Energetic_Universe.pdf. Accessed 10 Mar 2014

  2. http://athena2.irap.omp.eu/IMG/pdf/SP_XIFU_APH.pdf. Accessed 10 Mar 2014

  3. S. Lotti et al., NIM A 686, 31 (2012)

    Article  ADS  Google Scholar 

  4. S. Lotti et al., Proc. of SPIE 8443, 84435H–1 (2012)

    Article  Google Scholar 

  5. https://twiki.cern.ch/twiki/bin/view/Geant4/LowEnergyElectromagneticPhysicsWorkingGroup. Accessed 10 Mar 2014

  6. E. Perinati et al., J. Low Temp. Phys. 167, 232 (2012)

    Article  ADS  Google Scholar 

  7. R. Gobat et al., A&A 526, A133, (2011)

  8. S. Lotti et al., A&A to be submitted, (2013)

  9. L. Colasanti et al., AIP Conf. Proc. 1185, 438 (2009)

    Article  ADS  Google Scholar 

  10. F. Pröbst et al., J. Low Temp. Phys. 100, 69, (1995)

  11. M. Loidl et al., NIM A 465, 440 (2001)

    Article  ADS  Google Scholar 

  12. D.S. Akerib et al., Phys. Rev. D 72, 052009 (2005)

    Article  ADS  Google Scholar 

  13. C. Macculi et al., J. Low Temp. Phys. 167, 783 (2012)

    Article  ADS  Google Scholar 

  14. C. Macculi et al., Proc. of SPIE 8443, 84435G–1 (2012)

    Article  Google Scholar 

  15. C.N. Bailey et al., J. Low Temp. Phys. 167, 236 (2012)

    Article  ADS  Google Scholar 

  16. Beyer J., Private Communication (PTB-Berlin). (0000)

  17. C. Macculi et al., Proc. of SPIE 7732, 77323Y–1 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the INAF/IAPS and ASI contract (I/035/10/0). CM also acknowledges Jörn Beyer for useful discussion about the SQuID dynamics. The anonymous referees are acknowledged for having improved this proceeding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Macculi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macculi, C., Piro, L., Colasanti, L. et al. The Cryogenic AntiCoincidence Detector Project for ATHENA+: An Overview Up to the Present Status. J Low Temp Phys 176, 1022–1032 (2014). https://doi.org/10.1007/s10909-014-1150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1150-4

Keywords

Navigation