Skip to main content
Log in

The Predation Strategy of the Recluse Spider Loxosceles rufipes (Lucas, 1834) against four Prey Species

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Generalist predators have to deal with prey with sometimes very different morphologies and defensive behaviors. Therefore, such predators are expected to express plasticity in their predation strategy. Here we investigated the predatory behavior of the recluse spider Loxosceles rufipes (Araneae, Sicariidae) when attacking prey with different morphologies and defensive mechanisms. We expected L. rufipes to show different prey capture strategies and variable acceptance towards each prey type. Potential prey species were collected directly from the web or in the surroundings of the web-building site of L. rufipes. We collected and used the following in our experiments: termite workers (Nasutitermes sp.), lepidopteran larvae (Eurema salome), ants (Camponotus sp.) and isopods (Tylidae). We paired these prey with L. rufipes and recorded their behavior in captivity, quantifying acceptance rate, immobilization time and the sequence of behaviors by the predator. The acceptance rate was lower for isopods but not different among other prey. The immobilization time was higher for isopods than for termites and similar for the other pairwise comparisons. The behavioral sequence was similar for all prey except for isopods, which were also bit more often. Our combined results show plasticity in the behavior of L. rufipes and also show it subdues a potentially dangerous prey (ant) and an armored prey (isopod).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartos M (2007) Hunting prey with different escape potentials—alternative predatory tactics in a dune dwelling salticid. J Arachnol 35:499–508

    Article  Google Scholar 

  • Bartos M (2008) Alternative predatory tactics in a juvenile jumping spider. J Arachnol 36:300–305

    Article  Google Scholar 

  • Bartos M, Szczepko K, Stanska M (2013) Predatory response to changes in camouflage in a sexually dimorphic jumping spider. J Arachnol 41:381–386

    Article  Google Scholar 

  • Cala-Riquelme F, Gutiérrez-Estrada MA, Flórez E (2015) The genus Loxosceles Heineken & Lowe 1832 (Araneae: Sicariidae) in Colombia, with description of new cave-dwelling species. Zootaxa 4012:396–400

    Article  PubMed  Google Scholar 

  • Carvalho LA, Souza ES, Willemart RH (2012) Behavioral analysis of the interaction between the spitting spider Scytodes globula (Araneae: Scytodidae) and the harvestman Discocyrtus invalidus (Opiliones: Gonyleptidae). J Arachnol 40:332–337

    Article  Google Scholar 

  • Cramer KL (2008) Are brown recluse spiders (Loxosceles reclusa) scavengers? The influence of predator satiation, prey size and prey quality. J Arachnol 36:140–144

    Article  Google Scholar 

  • Cramer KL (2015) Activity patterns of a synanthropic population of the brown recluse spider, Loxosceles reclusa (Araneae: Sicariidae), with observations on feeding and mating. J Arachnol 43:67–71

    Article  Google Scholar 

  • Da Silva PH, Da Silveira RB, Appel MH, Mangili OC, Gremski W, Veiga SS (2004) Brown spiders and loxoscelism. Toxicon 44:693–709

    Article  PubMed  Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races between and within species. Proc Biol Sci 205:489–511

    Article  CAS  Google Scholar 

  • Dejean A (1988) Prey capture by Camponotus maculatus (Formicidae - Formicinae). Biol Behav 13:97–115

    Google Scholar 

  • Dias BC, Willemart RH (2013) The effectiveness of post-contact defenses in a prey with no pre-contact detection. Zoology 116:168–174

    Article  PubMed  Google Scholar 

  • Dugon MM, Arthur W (2012) Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda). J Insect Physiol 58:874–880

    Article  CAS  PubMed  Google Scholar 

  • Edmunds M (1974) Defence in animals: a survey of anti-predator defences. Longman, Harlow

    Google Scholar 

  • Fischer ML, Vasconcellos-Neto J, Gonzaga dos Santos Neto L (2006) The prey and predators of Loxosceles intermedia Leitao 1934 (Araneae, Sicariidae). J Arachnol 34:485–488

    Article  Google Scholar 

  • Gilbert C, Rayor LS (1985) Predatory behavior of spitting spiders (Araneae: Scytodidae) and the evolution of prey wrapping. J Arachnol 13:231–241

    Google Scholar 

  • Gonzaga MO, Vasconcellos-Neto J (2002) Collective prey capture and feeding behaviours of Anelosimus jabaquara Levi 1956 (Araneae: Theridiidae). Behaviour 139:573–584

    Article  Google Scholar 

  • Harland DP, Jackson RR (2006) A knife in the back: use of prey-specific attack tactics by araneophagic jumping spiders (Araneae: Salticidae). J Zool 269:285–290

    Article  Google Scholar 

  • Hendrickx F, Maelfait J-P, Langenbick F (2003) Absence of cadmium excretion and high assimilation result in cadmium biomagnification in a wolf spider. Ecotoxicol Environ Saf 55:287–292

    Article  CAS  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Huseynov RR, Jackson FR, Cross (2008) The meaning of predatory specialization as illustrated by Aelurillus m-nigrum, an ant-eating jumping spider (Araneae: Salticidae) from Azerbaijan. Behav Processes 77:389–399

    Article  PubMed  Google Scholar 

  • Liznarova E, Pekar S (2013) Dangerous prey is associated with a type 4 functional response in spiders. Anim Behav 85:1–8

    Article  Google Scholar 

  • Liznarova E, Pekar S (2015) Trophic niche of Oecobius maculatus (Araneae: Oecobiidae): evidence based on natural diet, prey capture success, and prey handling. J Arachnol 43:188–193

    Article  Google Scholar 

  • Líznarová E, Sentenská L, García LF, Pekár S, Viera C (2013) Local trophic specialisation in a cosmopolitan spider (Araneae). Zoology 116:20–26

    Article  PubMed  Google Scholar 

  • Nelson XJ, Jackson RR (2011) Flexibility in the foraging strategies of spiders. In: Herberstein ME (ed) Spider behavior: flexibility and versatility. Cambridge University Press, Cambridge, MA, pp. 31–56

    Chapter  Google Scholar 

  • Nentwig W (1986) Non-webbuilding spiders: prey specialists or generalists? Oecologia 69:571–576

    Article  Google Scholar 

  • Parks J, Stoecker WV, Kristensen C (2006) Observations on Loxosceles reclusa (Araneae, Sicariidae) feeding on short-horned grasshoppers. J Arachnol 34:221–226

    Article  Google Scholar 

  • Pekár S (2004) Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). J Arachnol 32:31–41

    Article  Google Scholar 

  • Pekár S, Toft S (2015) Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae). Biol Rev 90:744–761

    Article  PubMed  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL http://www.R-project.org/

    Google Scholar 

  • Rein JO (1993) Sting use in two species of Parabuthus scorpions (Buthidae). J Arachnol 21:60–63

    Google Scholar 

  • Řezáč M, Pekár S, Lubin Y (2008) How oniscophagous spiders overcome woodlouse Armour. J Zool 275:64–71

    Article  Google Scholar 

  • Sandidge J (2003) Scavenging by brown recluse spiders. Nature 426:30

    Article  CAS  PubMed  Google Scholar 

  • Segovia JMG, Del-Claro K, Willemart RH (2015a) Delicate fangs, smart killing: the predation strategy of the recluse spider. Anim Behav 101:169–177

    Article  Google Scholar 

  • Segovia JMG, Del-Claro K, Willemart RH (2015b) Defences of a Neotropical harvestman against different levels of threat by the recluse spider. Behaviour 152:757–773

    Article  Google Scholar 

  • Souza EDS, Willemart RH (2011) Harvest-ironman: heavy armature, and not its defensive secretions, protects a harvestman against a spider. Anim Behav 81:127–133

    Article  Google Scholar 

  • Touchard A, Aili SR, Fox EGP, Escoubas P, Orivel J, Nicholson GM, Dejean A (2016) The biochemical toxin arsenal from ant venoms. Toxins 8:30

    Article  PubMed Central  Google Scholar 

  • Viera C (2005) The prey capture behaviour of Metepeira gressa (Araneae, Araneidae) on mealworms, flies and ants. Rev Etol 7:53–62

    Google Scholar 

  • Wigger E, Kuhn-Nentwig L, Nentwig W (2002) The venom optimization hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon 40:749–752

    Article  CAS  PubMed  Google Scholar 

  • Wignall AE, Taylor PW (2009) Alternative predatory tactics of an araneophagic assassin bug (Stenolemus bituberus). Acta Ethol 12:23–27

    Article  Google Scholar 

  • Zobel-Thropp PA, Kerins AE, Binford GJ (2012) Sphingomyelinase D in sicariid spider venom is a potent insecticidal toxin. Toxicon 60:265–271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank to Franco’s family, Cristhian Rave, Julian Restrepo and Jessica Gutiérrez for their help during the field trips. Stano Pekár and his research team provided us with valuable suggestions. Paola Vanegas kindly assisted us with prey identification. Two anonymous reviewers provided valuable suggestions. LFG is supported by grant 8880 from the Uruguayan Agency for Research and Innovation (ANII), RHW is supported by a grant FAPESP 2015/01518-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. García.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, L.F., Franco, V., Robledo-Ospina, L.E. et al. The Predation Strategy of the Recluse Spider Loxosceles rufipes (Lucas, 1834) against four Prey Species. J Insect Behav 29, 515–526 (2016). https://doi.org/10.1007/s10905-016-9578-9

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-016-9578-9

Keywords

Navigation