Skip to main content
Log in

Substitution of CO Ligand by P(OPh)3 in Radical Cations of the Cymantrene Family: Relationships of Substitution Rates to E1/2 Values and Carbonyl IR Frequencies

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A series of piano-stool complexes of the cymantrene family (cymantrene = Mn(η5-C5H5)(CO)3, 1) undergoes facile replacement of a carbonyl ligand by P(OPh)3 when oxidized by one-electron in CH2Cl2/[NBu4][B(C6F5)4]. Data on the previously characterized complexes 1, Mn(η5-C5H4NH2)(CO)3 (3) and Mn(η5-C5Me5)(CO)3 (6) have been supplemented by cyclic voltammetry (CV) and IR spectroscopy on Mn(η5-C5H4Me)(CO)3 (2), Mn(η5-C5H4I)(CO)3 (4), and Mn(η5-C5H4C(O)H)(CO)3 (5). The substitution rates, determined by digital simulations of CV scans, ranged from 4 M−1 s−1 for 6 + to 3 × 105 M−1 s−1 for 5 +. In general, a more strongly donating cyclopentadienyl substituent slows down the CO substitution rate. For mono-cyclopentadienyl substituted complexes, the logarithm of ksub is shown to increase linearly with either the weighted average of the CO stretching frequencies or the E1/2 value of the redox process. An exception to this generalization is the amine-substituted complex 3, for which the CO-substitution rate is higher than predicted by its E1/2 potential. The substitution rate of the pentamethylated Cp complex 6 + is slowed by about an order of magnitude owing to steric effects. The efficacy of this method to predict the CO-substitution rate of a cymantrene-tagged molecule was tested with a cymamtrene-derivatized diarylethene complex, 7. The measured P(OPh)3-for-CO substitution rate of 3.7 × 102 M−1 s−1 for 7 + was very close to that predicted by the E1/2 value of 7. A ligand electronic parameter, EL, of 0.62 was determined for the triphenylphosphite ligand. These studies build on the previous CO substitution-rate analyses by Sweigart and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5

Similar content being viewed by others

References

  1. F. Basolo, J. New. Chem. 18, 19 (1994)

    CAS  Google Scholar 

  2. W.E. Geiger, Organometallics 24, 5738 (2007). (See pp. 5756–5759)

    Article  Google Scholar 

  3. G.J. Bezems, P.H. Rieger, S. Visco, J. Chem. Soc. Chem. Commun. 265 (1981)

  4. M.I. Bruce, D.C. Kehoe, J.G. Matisons, B.K. Nicholson, P.H. Rieger, M.L. Williams, J. Chem. Soc. Chem. Commun. 442 (1982)

  5. M.I. Bruce, J.G. Matisons, B.K. Nicholson, M.L. Williams, J. Organometal. Chem. 236, C57 (1982)

    Article  CAS  Google Scholar 

  6. M. Arewgoda, P.H. Rieger, B.H. Robinson, J. Simpson, S.J. Visco, J. Am. Chem. Soc. 104, 5633 (1982)

    Article  CAS  Google Scholar 

  7. M. Arewgoda, B.H. Robinson, J. Simpson, J. Am. Chem. Soc. 105, 1893 (1983)

    Article  CAS  Google Scholar 

  8. A.J. Downard, B.H. Robinson, J. Simpson, Organometallics 5, 1122 (1986)

    Article  CAS  Google Scholar 

  9. A.J. Downard, B.H. Robinson, J. Simpson, Organometallics 5, 1132 (1986)

    Article  CAS  Google Scholar 

  10. M.I. Bruce, Coord. Chem. Rev. 76, 1 (1987)

    Article  CAS  Google Scholar 

  11. Y. Huang, C.C. Neto, K.A. Pevear, M.M. Banaszak Holl, D.A. Sweigart, Y.K. Chung, Inorg. Chim. Acta 226, 53 (1994)

    Article  CAS  Google Scholar 

  12. J.W. Hershberger, J.K. Kochi, J. Chem. Soc. Chem. Commun. 212 (1982)

  13. J.W. Hershberger, R.J. Klingler, J.K. Kochi, J. Am. Chem. Soc. 104, 3034 (1982)

    Article  CAS  Google Scholar 

  14. T.R. Herrinton, T.L. Brown, J. Am. Chem. Soc. 107, 5700 (1985)

    Article  CAS  Google Scholar 

  15. L.K. Yeung, J.E. Kim, Y.K. Chung, P.H. Rieger, D.A. Sweigart, Organometallics 15, 3891 (1996)

    Article  CAS  Google Scholar 

  16. N.C. Ohrenberg, L.M. Paradee, R.J. Dewitte III, D. Chong, W.E. Geiger, Organometallics 29, 3179 (2010)

    Article  CAS  Google Scholar 

  17. P.M. Zizelman, C. Amatore, J.K. Kochi, J. Am. Chem. Soc. 106, 3771 (1984)

    Article  CAS  Google Scholar 

  18. J.K. Kochi, J. Organomet. Chem. 300, 139 (1986)

    Article  CAS  Google Scholar 

  19. W. Strohmeier, F.J. Müller, Chem. Ber. 100, 2812 (1967)

    Article  CAS  Google Scholar 

  20. C.A. Tolman, J. Am. Chem. Soc. 92, 2953 (1970)

    Article  CAS  Google Scholar 

  21. C.A. Tolman, Chem. Rev. 77, 313 (1977)

    Article  CAS  Google Scholar 

  22. C.J. Pickett, D. Pletcher, J. Organometal. Chem. 102, 327 (1975)

    Article  CAS  Google Scholar 

  23. J. Chatt, C.T. Kan, C.J. Leigh, C.J. Pickett, D.R. Stanley, J. Chem. Soc. Dalton Trans. 2032 (1980)

  24. B.E. Bursten, M.R. Green, in Progress in Inorganic Chemistry, vol. 36, ed. by S.J. Lippard (Wiley, New York, 1988)

    Chapter  Google Scholar 

  25. A.C. Sarapu, R.F. Fenske, Inorg. Chem. 14, 247 (1975)

    Article  CAS  Google Scholar 

  26. A.B.P. Lever, Inorg. Chem. 29, 1271 (1990)

    Article  CAS  Google Scholar 

  27. S. Lu, V.V. Strelets, M.F. Ryan, W.J. Pietro, A.B.P. Lever, Inorg. Chem. 35, 1013 (1996)

    Article  CAS  Google Scholar 

  28. D.R. Laws, D. Chong, K. Nash, A.L. Rheingold, W.E. Geiger, J. Am. Chem. Soc. 130, 9859 (2008)

    Article  CAS  Google Scholar 

  29. S. Leuthäuber, D. Schwarz, H. Plenio, Chem. Eur. J. 13, 7195 (2007)

    Article  Google Scholar 

  30. N. Tirosh, A. Modiano, M. Cais, J. Organomet. Chem. 5, 357 (1966)

    Article  CAS  Google Scholar 

  31. R.P. Hughes, R.C. Hemond, H.B. Locker, Organometallics 5, 2391 (1986)

    Article  Google Scholar 

  32. K. Wu, S. Top, E.A. Hillard, G. Jaouen, W.E. Geiger, Chem. Commun. 10109 (2011)

  33. R.R. Gagne, C.A. Koval, G.C. Lisensky, Inorg. Chem. 19, 2854 (1980)

    Article  CAS  Google Scholar 

  34. N.G. Connelly, W.E. Geiger, Chem. Rev. 96, 877 (1996)

    Article  CAS  Google Scholar 

  35. W.E. Geiger, in Laboratory Techniques in Electroanalytical Chemistry, 2nd edn., ed. by P.T. Kissinger, W.R. Heineman (Marcel Dekker, New York, 1996), pp. 683–717

    Google Scholar 

  36. Hammett σp constants taken from C. Hansch, A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biochemistry (Wiley-Interscience, New York, 1979)

  37. W.E. Britton, R. Kashyap, M. El-Hashash, M. El-Kady, M. Herberhold, Organometallics 5, 1029 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support of this work by the National Science Foundation (CHE-0808909 and CHE-1212339). One of the authors (WEG) was a postdoctoral associate at Northwestern University when Dwight Sweigart was finishing his Ph.D. studies. He shared research interests and friendship with Dwight for many years, and grew in admiration of Dwight’s contributions to organometallic chemistry and of his high scientific and ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Geiger.

Additional information

The authors dedicate this paper to the memory of prof. Dwight A. Sweigart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, K., Laws, D.R., Nafady, A. et al. Substitution of CO Ligand by P(OPh)3 in Radical Cations of the Cymantrene Family: Relationships of Substitution Rates to E1/2 Values and Carbonyl IR Frequencies. J Inorg Organomet Polym 24, 137–144 (2014). https://doi.org/10.1007/s10904-013-9976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-013-9976-9

Keywords

Navigation