Skip to main content
Log in

Ethnic Variation in Lipid Profile and Its Associations with Body Composition and Diet: Differences Between Iranians, Indians and Caucasians Living in Australia

  • Original Paper
  • Published:
Journal of Immigrant and Minority Health Aims and scope Submit manuscript

Abstract

Dyslipidaemia is a known risk factor for developing cardiovascular disease. The impact of ethnicity on variations in lipid patterns has been studied in certain racial and ethnic groups with limited data on other ethnicities, particularly Asian subgroups. This cross-sectional study evaluated the ethnic variation in lipid profile and its association with body composition and diet in ninety-one overweight and obese Australians of European (n = 32), Indian (n = 28) and Iranian (n = 31) ancestries. Different measures of total and truncal adiposity were assessed using the method of whole body dual energy X-ray absorptiometry. The results showed that serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-chol) levels in Iranians were significantly lower than in Europeans and Indians. Both Iranian and Indian groups exhibited lower mean high density lipoprotein cholesterol (HDL-chol) relative to Europeans. Triglycerides (TG) and HDL-chol, but not TC and LDL-chol, were significantly associated with different truncal adiposity measurements; however the degree of associations varied in ethnic groups. Regression analysis showed ethnicity as a significant predictor of TC (p = 0.01), TG (p = 0.03) and HDL-chol (p = 0.04), after controlling for potential confounders. However, LDL-chol was significantly associated with the intake of total (p = 0.005), and saturated fats (p = 0.004), which were also other significant determinants of serum TC (p = 0.04 and p = 0.02, respectively). In conclusion, ethnicity was a strong predictor of serum lipids, except LDL-chol which was significantly determined by dietary fat intake. Prevention and management of obesity, particularly abdominal adiposity may effectively reduce the risk of low HDL-chol reported in Iranians and Indians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farnier M. Dyslipidemia and abdominal obesity: mechanisms and characteristics (Part I). Arch Mal Coeur Vaiss. 2007;100(12):979–84.

    CAS  PubMed  Google Scholar 

  2. Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5(4):1218–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Randall OS, Retta TM, Kwagyan J, Gordeuk VR, Xu S, Maqbool AR, Ketete M, Obisesan TO. Obese African Americans: the prevalence of dyslipidemia, hypertension, and diabetes mellitus. Ethn Dis. 2004;14(3):384–8.

    PubMed  Google Scholar 

  4. Australian Bureau of Statistics: Australian Health Survey: biomedical results for chronic diseases, 2011–12. In: Canberra; 2013. http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/DB595DB607116672CA257BBB0012186D?opendocument

  5. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

    CAS  PubMed  Google Scholar 

  6. Giles GG, Ireland P. Dietary questionnaire for epidemiological studies (version 2). Melbourne: The Cancer Council Victoria; 1996.

    Google Scholar 

  7. Hodge A, Patterson A, Brown W, Ireland P, Giles G. The Anti Cancer Council of Victoria FFQ: relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust N Z J Public Health. 2000;24(6):576–83.

    Article  CAS  PubMed  Google Scholar 

  8. Craig C, Marshall A, Sjöström M, Bauman A, Booth M, Ainsworth B, Pratt M, Ekelund U, Yngve A, Sallis J, The IPAQ, Consensus Group and the IPAQ Reliability and Validity Study Group. International physical activity questionnaire (IPAQ): 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95.

    Article  PubMed  Google Scholar 

  9. McQuillan BM, Beilby JP, Nidorf M, Thompson PL, Hung J. Hyperhomocysteinemia but not the C677T mutation of methylenetetrahydrofolate reductase is an independent risk determinant of carotid wall thickening. The Perth Carotid Ultrasound Disease Assessment Study (CUDAS). Circulation. 1999;99(18):2383–8.

    Article  CAS  PubMed  Google Scholar 

  10. Chow CK, McQuillan B, Raju PK, Iyengar S, Raju R, Harmer JA, Neal BC, Celermajer DS. Greater adverse effects of cholesterol and diabetes on carotid intima-media thickness in South Asian Indians: comparison of risk factor-IMT associations in two population-based surveys. Atherosclerosis. 2008;199(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  11. Jeyaseelan L, Rao PS. Methods of determining sample sizes in clinical trials. Indian Pediatr. 1989;26(2):115–21.

    CAS  PubMed  Google Scholar 

  12. Azizi F, Rahmani M, Emami H, Mirmiran P, Hajipour R, Madjid M, Ghanbili J, Ghanbarian A, Mehrabi Y, Saadat N, et al. Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase 1). Soz Praventivmed. 2002;47(6):408–26.

    Article  PubMed  Google Scholar 

  13. Azizi F, Rahmani M, Ghanbarian A, Emami H, Salehi P, Mirmiran P, Sarbazi N. Serum lipid levels in an Iranian adults population: Tehran Lipid and Glucose Study. Eur J Epidemiol. 2003;18(4):311–9.

    Article  CAS  PubMed  Google Scholar 

  14. Kelishadi R, Pour MH, Zadegan NS, Kahbazi M, Sadry G, Amani A, Ansari R, Alikhassy H, Bashardoust N. Dietary fat intake and lipid profiles of Iranian adolescents: Isfahan Healthy Heart Program–Heart Health Promotion from childhood. Prev Med. 2004;39(4):760–6.

    Article  CAS  PubMed  Google Scholar 

  15. Kelishadi R, Haghjooy Javanmard S, Tajadini MH, Mansourian M, Motlagh ME, Ardalan G, Ban M. Genetic association with low concentrations of high density lipoprotein-cholesterol in a pediatric population of the Middle East and North Africa: the CASPIAN-III study. Atherosclerosis. 2014;237(1):273–8.

    Article  CAS  PubMed  Google Scholar 

  16. Tresaco B, Moreno LA, Ruiz JR, Ortega FB, Bueno G, Gonzalez-Gross M, Warnberg J, Gutierrez A, Garcia-Fuentes M, Marcos A, et al. Truncal and abdominal fat as determinants of high triglycerides and low HDL-cholesterol in adolescents. Obesity. 2009;17(5):1086–91.

    Article  CAS  PubMed  Google Scholar 

  17. Flodmark CE, Sveger T, Nilsson-Ehle P. Waist measurement correlates to a potentially atherogenic lipoprotein profile in obese 12–14-year-old children. Acta Paediatr. 1994;83(9):941–5.

    Article  CAS  PubMed  Google Scholar 

  18. Haffner SM, Stern MP, Hazuda HP, Pugh J, Patterson JK. Do upper-body and centralized adiposity measure different aspects of regional body-fat distribution? Relationship to non-insulin-dependent diabetes mellitus, lipids, and lipoproteins. Diabetes. 1987;36(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  19. Gupta R, Guptha S, Agrawal A, Kaul V, Gaur K, Gupta VP. Secular trends in cholesterol lipoproteins and triglycerides and prevalence of dyslipidemias in an urban Indian population. Lipids Health Dis. 2008;7:40.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shahraki T, Shahraki M, Roudbari M, Gargari BP. Determination of the leading central obesity index among cardiovascular risk factors in Iranian women. Food Nutr Bull. 2008;29(1):43–8.

    Article  PubMed  Google Scholar 

  21. Anderson KM, Wilson PW, Garrison RJ, Castelli WP. Longitudinal and secular trends in lipoprotein cholesterol measurements in a general population sample. The Framingham Offspring Study. Atherosclerosis. 1987;68(1–2):59–66.

    Article  CAS  PubMed  Google Scholar 

  22. Bozorgmanesh MR, Hadaegh F, Padyab M, Mehrabi Y, Azizi F. Temporal changes in anthropometric parameters and lipid profile according to body mass index among an adult Iranian urban population. Ann Nutr Metab. 2008;53(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  23. Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr. 1992;56(2):320–8.

    CAS  PubMed  Google Scholar 

  24. Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, Gonzalez-Campoy JM, Jones SR, Kumar R, La Forge R, et al. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7(4):304–83.

    Article  PubMed  Google Scholar 

  25. Raji A, Seely EW, Arky RA, Simonson DC. Body fat distribution and insulin resistance in healthy Asian Indians and Caucasians. J Clin Endocrinol Metab. 2001;86(11):5366–71.

    Article  CAS  PubMed  Google Scholar 

  26. Valsamakis G, Chetty R, Anwar A, Banerjee AK, Barnett A, Kumar S. Association of simple anthropometric measures of obesity with visceral fat and the metabolic syndrome in male Caucasian and Indo-Asian subjects. Diabet Med. 2004;21(12):1339–45.

    Article  CAS  PubMed  Google Scholar 

  27. Bhardwaj S, Misra A, Misra R, Goel K, Bhatt SP, Rastogi K, Vikram NK, Gulati S. High prevalence of abdominal, intra-abdominal and subcutaneous adiposity and clustering of risk factors among urban Asian Indians in North India. PLoS ONE. 2011;6(9):e24362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Banerji MA, Faridi N, Atluri R, Chaiken RL, Lebovitz HE. Body composition, visceral fat, leptin, and insulin resistance in Asian Indian men. J Clin Endocrinol Metab. 1999;84(1):137–44.

    CAS  PubMed  Google Scholar 

  29. Wycherley TP, Moran LJ, Clifton PM, Noakes M, Brinkworth GD. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96(6):1281–98.

    Article  CAS  PubMed  Google Scholar 

  30. Mirmiran P, Ramezankhani A, Hekmatdoost A, Azizi F. Effect of nutrition intervention on non-communicable disease risk factors among Tehranian adults: Tehran Lipid and Glucose Study. Ann Nutr Metab. 2008;52(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  31. Ghosh A. Comparison of anthropometric, metabolic and dietary fatty acids profiles in lean and obese dyslipidaemic Asian Indian male subjects. Eur J Clin Nutr. 2007;61(3):412–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kelishadi R, Hashemipour M, Sheikh-Heidar A, Ghatreh-Samani S. Changes in serum lipid profile of obese or overweight children and adolescents following a lifestyle modification course. ARYA Atheroscler. 2012;8(3):143–8.

    PubMed  PubMed Central  Google Scholar 

  33. Huffman KM, Hawk VH, Henes ST, Ocampo CI, Orenduff MC, Slentz CA, Johnson JL, Houmard JA, Samsa GP, Kraus WE, et al. Exercise effects on lipids in persons with varying dietary patterns-does diet matter if they exercise? Responses in studies of a targeted risk reduction intervention through defined exercise I. Am Heart J. 2012;164(1):117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Roos N, Schouten E, Katan M. Consumption of a solid fat rich in lauric acid results in a more favorable serum lipid profile in healthy men and women than consumption of a solid fat rich in trans-fatty acids. J Nutr. 2001;131(2):242–5.

    PubMed  Google Scholar 

  35. Roberts CK, Barnard RJ, Liang KH, Vaziri ND. Effect of diet on adipose tissue and skeletal muscle VLDL receptor and LPL: implications for obesity and hyperlipidemia. Atherosclerosis. 2002;161(1):133–41.

    Article  CAS  PubMed  Google Scholar 

  36. Mozaffarian D, Abdollahi M, Campos H, Houshiarrad A, Willett WC. Consumption of trans fats and estimated effects on coronary heart disease in Iran. Eur J Clin Nutr. 2007;61(8):1004–10.

    Article  CAS  PubMed  Google Scholar 

  37. Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr. 1999;69(1):30–42.

    CAS  PubMed  Google Scholar 

  38. Olatunji LA, Soladoye AO. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats. Afr J Med Med Sci. 2007;36(2):155–61.

    CAS  PubMed  Google Scholar 

  39. Ditscheid B, Keller S, Jahreis G. Cholesterol metabolism is affected by calcium phosphate supplementation in humans. J Nutr. 2005;135(7):1678–82.

    CAS  PubMed  Google Scholar 

  40. Sharifi F, Mousavinasab SN, Soruri R, Saeini M, Dinmohammadi M. High prevalence of low high-density lipoprotein cholesterol concentrations and other dyslipidemic phenotypes in an Iranian population. Metab Syndr Relat Disord. 2008;6(3):187–95.

    Article  CAS  PubMed  Google Scholar 

  41. Schwandt P, Kelishadi R, Haas GM. Ethnic disparities of the metabolic syndrome in population-based samples of German and Iranian adolescents. Metab Syndr Relat Disord. 2010;8(2):189–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariba Alaei-Shahmiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshkini, M., Alaei-Shahmiri, F., Mamotte, C. et al. Ethnic Variation in Lipid Profile and Its Associations with Body Composition and Diet: Differences Between Iranians, Indians and Caucasians Living in Australia. J Immigrant Minority Health 19, 67–73 (2017). https://doi.org/10.1007/s10903-015-0320-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10903-015-0320-z

Keywords

Navigation