Skip to main content
Log in

Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This article develops a novel global optimization algorithm using potential Lipschitz constants and response surfaces (PLRS) for computationally expensive black box functions. With the usage of the metamodeling techniques, PLRS proposes a new approximate function \({\hat{F}}\) to describe the lower bounds of the real function \(f\) in a compact way, i.e., making the approximate function \({\hat{F}}\) closer to \(f\). By adjusting a parameter \({\hat{K}}\) (an estimate of the Lipschitz constant \(K\)), \({\hat{F}}\) could approximate \(f\) in a fine way to favor local exploitation in some interesting regions; \({\hat{F}}\) can also approximate \(f\) in a coarse way to favor global exploration over the entire domain. When doing optimization, PLRS cycles through a set of identified potential estimates of the Lipschitz constant to construct the approximate function from fine to coarse. Consequently, the optimization operates at both local and global levels. Comparative studies with several global optimization algorithms on 53 test functions and an engineering application indicate that the proposed algorithm is promising for expensive black box functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pintér, J.: Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications, vol. 6. Springer, Berlin (1996)

    MATH  Google Scholar 

  2. Strongin, R.G., Sergeyev, Y.D.: Global Optimization With Non-convex Constraints: Sequential and Parallel Algorithms, vol. 45. Springer, Berlin (2000)

    Google Scholar 

  3. Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal. 9(3), 379–388 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  4. Mladineo, R.H.: An algorithm for finding the global maximum of a multimodal, multivariate function. Math. Program. 34(2), 188–200 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kvasov, D.E., Sergeyev, Y.D.: Multidimensional global optimization algorithm based on adaptive diagonal curves. Comput. Math. Math. Phys. 43(1), 40–56 (2003)

    MathSciNet  Google Scholar 

  7. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3(2), 303–318 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Strongin, R.: On the convergence of an algorithm for finding a global extremum. Eng. Cybern. 11, 549–555 (1973)

    MathSciNet  Google Scholar 

  10. De Haan, L.: Estimation of the minimum of a function using order statistics. J. Am. Stat. Assoc. 76(374), 467–469 (1981)

    Article  MATH  Google Scholar 

  11. Wood, G., Zhang, B.: Estimation of the Lipschitz constant of a function. J. Glob. optim. 8(1), 91–103 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sergeyev, Y.D., Pugliese, P., Famularo, D.: Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints. Math. Program. 96(3), 489–512 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Piyavskii, S.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math. Math. Phys. 12(4), 57–67 (1972)

    Article  Google Scholar 

  14. Liu, H., Xu, S., Wang, X., Wu, J., Song, Y.: A global optimization algorithm for simulation-based problems via the extended DIRECT scheme. Eng. Optim. (2014). doi:10.1080/0305215X.2014.971777

  15. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Watson, L.T., Baker, C.A.: A fully-distributed parallel global search algorithm. Eng. Comput. 18(1/2), 155–169 (2001)

    Article  MATH  Google Scholar 

  17. Siah, E.S., Sasena, M., Volakis, J.L., Papalambros, P.Y., Wiese, R.W.: Fast parameter optimization of large-scale electromagnetic objects using DIRECT with Kriging metamodeling. Microw. Theory Tech. IEEE Trans. 52(1), 276–285 (2004)

    Article  Google Scholar 

  18. Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45(2), 353–375 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, Q., Cheng, W.: A modified direct algorithm with bilevel partition. J. Glob. Optim. 60(3), 483–499 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59(1), 23–40 (2013)

    Article  Google Scholar 

  21. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased Disimpl algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014)

    Article  MATH  Google Scholar 

  22. Jones, D.R.: Direct global optimization algorithm. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, pp. 431–440. Kluwer Academic Publishers, Dordrecht (2001)

    Chapter  Google Scholar 

  23. Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett., pp. 1–10 (2014)

  24. Tavassoli, A., Haji Hajikolaei, K., Sadeqi, S., Wang, G.G., Kjeang, E.: Modification of DIRECT for high-dimensional design problems. Eng. Optim. 46(6), 810–823 (2014)

    Article  MathSciNet  Google Scholar 

  25. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14(4), 331–355 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ljungberg, K., Holmgren, S., Carlborg, Ö.: Simultaneous search for multiple QTL using the global optimization algorithm DIRECT. Bioinformatics 20(12), 1887–1895 (2004)

    Article  Google Scholar 

  27. Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5(4), 858–870 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal GO methods. Numer. Math. 94(1), 93–106 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program. 81(1), 127–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1), 99–111 (2015)

    Article  MathSciNet  Google Scholar 

  31. Cressie, N.: Spatial prediction and ordinary kriging. Math. Geol. 20(4), 405–421 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  32. Fang, H., Horstemeyer, M.F.: Global response approximation with radial basis functions. Eng. Optim. 38(04), 407–424 (2006)

    Article  MathSciNet  Google Scholar 

  33. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Gutmann, H.-M.: A radial basis function method for global optimization. J. Glob. Optim. 19(3), 201–227 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box functions using radial basis functions. J. Glob. Optim. 31(1), 153–171 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Holmström, K.: An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization. J. Glob. Optim. 41(3), 447–464 (2008)

    Article  MATH  Google Scholar 

  37. Gu, J., Li, G., Dong, Z.: Hybrid and adaptive meta-model-based global optimization. Eng. Optim. 44(1), 87–104 (2012)

    Article  Google Scholar 

  38. Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013)

    Book  MATH  Google Scholar 

  40. Meewella, C., Mayne, D.: An algorithm for global optimization of Lipschitz continuous functions. J. Optim. Theory Appl. 57(2), 307–322 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  41. Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plan. Inference 26(2), 131–148 (1990)

    Article  MathSciNet  Google Scholar 

  42. Viana, F.A., Venter, G., Balabanov, V.: An algorithm for fast optimal Latin hypercube design of experiments. Int. J. Numer. Methods Eng. 82(2), 135–156 (2010)

    MATH  MathSciNet  Google Scholar 

  43. Liu, H., Xu, S., Wang, X.: Sequential sampling designs based on space reduction. Eng. Optim., 1–18 (2014)

  44. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Algorithm 829: software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. (TOMS) 29(4), 469–480 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(4), 370–380 (2007)

    Article  MathSciNet  Google Scholar 

  46. Lautenschlager, U., Eschenauer, H.A., Mistree, F.: Multiobjective flywheel design: a doe-based concept exploration task. In: Dutta, D., (ed.) Advances in Design Automation, pp. 14–17 (1997)

  47. Eby, D., Averill, R., Goodman, E., Punch, W.: The optimization of flywheels using an injection island genetic algorithm. Evol. Des. Comput., pp. 167–190 (1999)

  48. Kress, G.: Shape optimization of a flywheel. Struct. Multidiscip. Optim. 19(1), 74–81 (2000)

    Article  MathSciNet  Google Scholar 

  49. Arslan, M.A.: Flywheel geometry design for improved energy storage using finite element analysis. Mater. Des. 29(2), 514–518 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from National Natural Science Foundation of China (11402047, 51308090), National Program on Key Basic Research Project (2015CB057301) and Ph.D. Programs Foundation of Liaoning Province (20131019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Xu, S., Ma, Y. et al. Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces. J Glob Optim 63, 229–251 (2015). https://doi.org/10.1007/s10898-015-0283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0283-6

Keywords

Navigation