Skip to main content
Log in

Synthesis and Characterization of Surface Modified, Fluorescent and Biocompatible ZnS Nanoparticles with a Hydrophobic Chitosan Derivative

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The introduction of a hydrophobic moiety on chitosan enhances the self-assembling properties, mucoadhesion, the permeability of the macromolecule and aids in target specific delivery. Our group synthesized a hydrophobic trans N-(6,6-Dimethyl-2-hepten-4-ynyl)chitosan derivative (CSD) and studied the surface modification of ZnS nanoparticles in a single pot reaction. X-ray diffraction studies and FESEM imaging confirms the nano size and morphology of the surface modified Zinc sulfide nanoparticles (ZnS-CSD NPs). The proposed ZnS-CSD NPs showed excellent emission at 457 nm. Photostability studies indicate that the surface modified ZnS-CSD NPs possess better photostability than Rhodamine B and FITC. Cell viability tests confirmed the biocompatibility of the modified nanoparticles. All these features of ZnS- CSD NPs makes these candidates an excellent choice in a wide range of in vitro or in vivo studies as fluorescent biological labels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stewart BW, Wild CP (Eds.): World Cancer Report (2014) International Agency for Research on Cancer (IARC), 2014. 630pp

  2. Prashant A, Gustav JS, Klaas N (2010) Chitosan-based systems for molecular imaging. Adv Drug Deliv Rev 62:42–58

    Article  Google Scholar 

  3. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46

    Article  CAS  PubMed  Google Scholar 

  4. Hwang JM et al (2005) Preparation and characterization of ZnS-based monocrystalline particles for polymer light-emitting diodes. Curr Appl Phys 5(1):31–34

    Article  Google Scholar 

  5. Cho H et al (2009) Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayers transparent electrodes. Org Electron 10(6):1163–1169

    Article  CAS  Google Scholar 

  6. Ji Z, Xiao-X F, Jin Q, Zhi-F Z, Yan-M M, Gui-Q Y (2016) A sensitive phosphorescence method based on MPA-capped Mn-doped ZnS quantum dots for the detection of diprophylline. New J Chem 40:3857–3862

    Article  Google Scholar 

  7. Haiying W, Xiaofeng L, Yiyang Z, Ce W (2006) Preparation and characterization of ZnS: Cu/PVA composite nanofibers via electrospinning. Mater Lett 60:2480–2484

    Article  Google Scholar 

  8. Pallab S, Shivendra BP, Arun C, Siddhartha SG (2010) Incorporation of gene therapy vector in chitosan stabilized Mn2+-doped ZnS quantum dot. Mater Lett 64:2534–2537

    Article  Google Scholar 

  9. Haizhen H, Xiurong Y (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339:2627–2631

    Article  Google Scholar 

  10. Sugunan A, Thanachayanont C, Dutta JG (2005) Heavy metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater. doi:10.1016/j.stam.2005.03.007

    Google Scholar 

  11. Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43:401–414

    Article  CAS  PubMed  Google Scholar 

  12. Muzzarelli RAA (1997) Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell Mol Life Sci 53:131–140

    Article  CAS  PubMed  Google Scholar 

  13. Bersch PC, Nies B, Liebendorfer A (1995) Evaluation of the biological properties of different wound dressing materials. J Mater Sci Mater Med 6:231–240

    Google Scholar 

  14. Sudheesh KS, Mishra AK, Omotayo AA, Bhekie BM (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  Google Scholar 

  15. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  PubMed  Google Scholar 

  16. Gupta K, Ravi Kumar M (2000) Drug release behavior of beads and micro granules of chitosan. Biomaterials 21:1115–1119

    Article  CAS  PubMed  Google Scholar 

  17. Hari P, Chandy T, Sharma CP (1996) Chitosan/calcium–alginate beads for oral delivery of insulin. J Appl Polym Sci 59:1795–1801

    Article  CAS  Google Scholar 

  18. Hirano S (1999) Chitin and chitosan as novel biotechnological materials. Polym Int 48:732–734

    Article  CAS  Google Scholar 

  19. Yu Y, Shengpeng W, Yitao W, Xiaohui W, Qun W, Meiwan C (2014) Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol Adv 32:1301–1316

    Article  Google Scholar 

  20. Huo M, Zhang Y, Zhou J, Zou A, Yu D, Wu Y et al (2010) Synthesis and characterization of low toxic amphiphilic chitosan derivatives and their application as micelle carrier for the antitumor drug. Int J Pharm 394:162–173

    Article  CAS  PubMed  Google Scholar 

  21. Opanasopit P, Ngawhirunpat T, Chaidedgumjorn A, Rojanarata T, Apirakaramwong A, Phongying S et al (2006) Incorporation of camptothecin into N-phthaloyl chitosan-gmPEGself-assembly micellar system. Eur J Pharm Biopharm 64:269–276

    Article  CAS  PubMed  Google Scholar 

  22. Liu K-H, Chen B-R, Chen S-Y, Liu D-M (2009) Self-assembly behavior and doxorubicin-loading capacity of acylated carboxymethyl chitosans. J Phys Chem B 113:11800–11807

    Article  CAS  PubMed  Google Scholar 

  23. Lee C, Choi JS, Kim I, Byeon HJ, Kim TH, Oh KT et al (2014) Decanoic acid-modified glycol chitosan hydrogels containing tightly adsorbed palmityl-acylated exendin-4 as a long-acting sustained-release anti-diabetic system. Acta Biomater 10:812–820

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y-S, Jiang Q, Li R-S, Liu L-L, Zhang Q-Q, Wang Y-M, Zhao J(2008) Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel. Nanotechnology 19:145101

  25. Desbrieres J, Martinez C, Rinaudo M (1996) Hydrophobic derivatives of chitosan: characterization and rheological behavior. Int J Biol Macromol 19:21–28

    Article  CAS  PubMed  Google Scholar 

  26. Jayakumar R, Prabakaran M, Muzzarelli RAA (2011) Chitosan for biomaterials II. Springer Verlag, Berlin Heidelberg, pp 24–32

    Google Scholar 

  27. Hitoshi S, Yoshihiro S (1999) Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins. Carbohydr Polym 39:127–138

    Article  Google Scholar 

  28. Chan Le T, Monique L,Pompilia I-S, Mircea AM (2003) N-acylated chitosan:hydrophobic matrices for controlled drug release. J.Control.Release 93:1–13

  29. Hermanson GT (2013) Bioconjugate Techniques, 3rd Edition, Academic Press, Elsevier.

  30. Manjusha EM, Jithin CM, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Folate conjugated carboxymethyl chitosan–manganese doped zinc sulfide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym 80:443–449

    Google Scholar 

  31. Siti M, Ara SM, Andrew MacKay J (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62:1052–1063

    Article  Google Scholar 

  32. Ramanery FP, Mansur AAP, Mansur HS (2013) One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates. Nanoscale Res Lett 8:512

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sureshkumar S, Jothimani B, Sridhar TM, Venkatachalapathy B (2016a) Synthesis and characterization of gadolinium-doped ZnSe quantum dots for fluorescence imaging of cancer cells. RSC Adv 6:16081–16086

    Article  CAS  Google Scholar 

  34. Sureshkumar S, Jothimani B, Sridhar TM, Venkatachalapathy B (2016b) Synthesis of hexagonal ZnO-PQ7 nanodisks conjugated with folic acid to image MCF −7 cancer cells. J Fluoresc. doi:10.1007/s10895-016-1932-y

    PubMed  Google Scholar 

  35. Ummartyotin S, Bunnak N, Juntaro J, Sain M, Manuspiya H (2012) Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder. Solid State Sci 14:299–304

    Article  CAS  Google Scholar 

  36. Chang S-Q, Kang B, Dai Y-D, Zhang H-X, Chen D (2011) One-step fabrication of biocompatible chitosan coated ZnS and ZnS: Mn2+ quantum dots via gamma-radiation route. Nanoscale Res Lett 6:591

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wageh S, Ling ZS, Xu-Rong X (2003) Growth and optical properties of colloidal ZnS nanoparticles. J Cryst Growth 255:332–337

    Article  CAS  Google Scholar 

  38. Tarasov K, Houssein D, Destarac M, Marcotte N, Gérardin C, Tichit D (2013) Stable aqueous colloids of ZnS quantum dots prepared using double hydrophilic block copolymers. New J Chem 37:508–514

    Article  CAS  Google Scholar 

  39. Zheng Y, Gao S, Ying JY (2007) Synthesis and cell imaging applications of glutathione-capped CdTe quantum dots. Adv Mater 19:376–380

    Article  CAS  Google Scholar 

  40. Barman B, Sarma KC (2011) Luminescence properties of ZnS quantum dots embedded in polymer matrix. Chalcogenide Lett 8:171–176

    CAS  Google Scholar 

  41. Xue Z, Shengjiang W, Weijia Z, Jichuan Q, Yongzhong W, Hongzhi L, Chengwei X, Xiaopeng H (2014) Highly biocompatible POSS-coated CdTe quantum dots for cell labeling. RSC Adv 4:598

    Article  Google Scholar 

  42. Rozenberg BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33:40–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Venkatachalapathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jothimani, B., Sureshkumar, S. & Venkatachalapathy, B. Synthesis and Characterization of Surface Modified, Fluorescent and Biocompatible ZnS Nanoparticles with a Hydrophobic Chitosan Derivative. J Fluoresc 27, 1277–1284 (2017). https://doi.org/10.1007/s10895-017-2059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2059-5

Keywords

Navigation