Skip to main content
Log in

New Fluorescent and Colorimetric Chemosensor for Detection of Cyanide with High Selectivity and Sensitivity in Aqueous Media

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A fluorescent and colorimetric chemosensor for detection of cyanide ion based on a styryl quinoline derivative has been designed and synthesized. The chemosensor (E)-2-(4-mercaptostyryl)quinolin-8-ol L showed high selectivity for detection of cyanide over other anions such as F¯, Cl¯, Br¯, I¯, NO3¯, SCN¯, N3¯, ClO4¯, H2PO4¯, AcO¯, HCO3¯, SO4 2¯ and HSO4¯in aqueous solution. The chemosensor L displayed an immediate visible and fluorescence changes from nearly colorless to orange and greenish-blue to brick-red upon addition of cyanide ion respectively. It is more likely, these distinct changes can be attributed to hydrogen bonding interaction between phenol group and cyanide anion leading to a 1:1 binding stoichiometry following with deprotonation of phenol group. The detection limit for chemosensor L toward CN¯ was 2.73× 10−8 M. Thus, the chemosensor can be used efficiently and selectively for detection and monitoring of small amounts of cyanide ion in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu Z, Kim SK, Yoon J (2010) Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006-2009. Chem Soc Rev 39:1457–1510

    Article  PubMed  Google Scholar 

  2. Kim SK, Kim HN, Xiaoru Z, Lee HN, Lee HN, Soh JH, Swamy KMK, Yoon J (2007) Recent development of anion selective fluorescent chemosensors. Supramol Chem 19:221–227

    Article  CAS  Google Scholar 

  3. Zhang X, Yin J, Yoon J (2014) Recent advances in development of chiral fluorescent and colorimetric sensors. Chem Rev 114:4918–4959

    Article  CAS  PubMed  Google Scholar 

  4. Yoon JY, Kim SK, Singh NJ, Kim KS (2006) Imidazolium receptors for the recognition of anions. Chem Soc Rev 35:355–356

    Article  CAS  PubMed  Google Scholar 

  5. Kim SK, Kang BG, Koh HS, Yoon YJ, Jung SJ, Jeong B, Lee KD, Yoon J (2004) A new imidazolium cavitand for the recognition of dicarboxylates. Org Lett 6:4655–4658

    Article  CAS  PubMed  Google Scholar 

  6. Kim SK, Singh NJ, Kwon J, Hwang IC, Park SJ, Kim KS, Yoon J (2006) Fluorescent imidazolium receptors for the recognition of pyrophosphate. Tetrahedron 62:6065–6072

    Article  CAS  Google Scholar 

  7. Song NR, Moon JH, Jun EJ, Choi J, Kim Y, Kim SJ, Lee JY, Yoon J (2013) Cyclic benzobisimidazolium derivative for the selective fluorescent recognition of HSO4 in aqueous solution via C-H hydrogen bondings. Chem Sci 4:1765–1771

    Article  CAS  Google Scholar 

  8. Kellin D (1929) Cytochrome and respiratory enzymes. Proc R Soc Lond B Biol Sci 104:206–252

    Article  Google Scholar 

  9. Huang XH, Gu XG, Zhang GX, Zhang DQ (2012) A highly selective fluorescence turn-on detection of cyanide based on the aggregation of tetraphenylethylene molecules induced by chemical reaction. Chem Commun 48:12195–12197

    Article  CAS  Google Scholar 

  10. Baskin SI, Brewer TG, Sidell F, Takafuji ET, Franz DR (1997) Medical aspects of chemical and biological warfare. TMM publications, Washington, pp 271–286

    Google Scholar 

  11. Sharma VK, Burnett CR, Yngard RA, Cabelli DE (2005) Iron (VI) and iron(V) oxidation of copper(I) cyanide. Environ Sci Technol 39:3849–3854

    Article  CAS  PubMed  Google Scholar 

  12. Ullmann’s Encyclopedia of Industrial Chemistry 1 edition (1999) Wiley-VCH, New York

  13. Christison TT, Rohrer JS (2007) Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. J Chromatogr A 1155:31–39

    Article  CAS  PubMed  Google Scholar 

  14. Themelis DG, Karastogianni SC, Tzanavaras PD (2009) Selective determination of cyanides by gas diffusion-stopped flow-sequential injection analysis and an on-line standard addition approach. Anal Chim Acta 632:93–100

    Article  CAS  PubMed  Google Scholar 

  15. Surleva AR, Neshkova MT (2008) A new generation of cyanide ion-selective membranes for flow injection application: part III. A simple approach to the determination of toxic metal–cyanide complexes without preliminary separation. Talanta 76:914–921

    Article  CAS  PubMed  Google Scholar 

  16. Taheri A, Noroozifar M, Motlagh MK (2009) Investigation of a new electrochemical cyanide sensor based on Ag nanoparticles embedded in a three-dimensional sol-gel. J Electroanal Chem 628:48–54

    Article  CAS  Google Scholar 

  17. Abbaspour A, Asadi M, Ghaffarinejad A, Safaei EA (2005) Selective modified carbon paste electrode for determination of cyanide using tetra-3,4-pyridinoporphyrazinatocobalt(II). Talanta 66:931–936

    Article  CAS  PubMed  Google Scholar 

  18. Lindsay AE, Hare DO (2006) The development of an electrochemical sensor for the determination of cyanide in physiological solutions. Anal Chim Acta 558:158–163

    Article  CAS  Google Scholar 

  19. Timofeyenko YG, Rosentreter JJ, Mayo S (2007) Piezoelectric quartz crystal microbalance sensor for trace aqueous cyanide ion determination. Anal Chem 79:251–255

    Article  CAS  PubMed  Google Scholar 

  20. Park GJ, Hwang IH, Song EJ, Kim H, Kim C (2014) A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide. Tetrahedron 70:2822–2828

    Article  CAS  Google Scholar 

  21. Shahid M, Razi SS, Srivastava P, Ali R, Maiti B, Misra A (2012) A useful scaffold based on acenaphthene exhibiting Cu2+ induced excimer fluorescence and sensing cyanide via Cu2+displacement approach. Tetrahedron 68:9076–9084

    Article  CAS  Google Scholar 

  22. Jung HS, Han JH, Kim ZH, Kang C, Kim JS (2011) Coumarin-Cu(II) ensemble-based cyanide sensing Chemodosimeter. Org Lett 13:5056–50590

    Article  CAS  PubMed  Google Scholar 

  23. Saha S, Ghosh A, Mahato P, Mishra S, Mishra SK, Suresh E, Das S, Das A (2010) Specific recognition and sensing of CN¯ in sodium cyanide solution. Org Lett 12:3406–3409

    Article  CAS  PubMed  Google Scholar 

  24. Gimeno N, Li X, Durrant JR, Vilar R (2008) Cyanide sensing with organic dyes: studies in solution and on nanostructured Al2O3 surfaces. Chem Eur J 14:3006–3012

    Article  CAS  PubMed  Google Scholar 

  25. Kim S, Noh JY, Park SJ, Na YJ, Hwang IH, Min J, Kim C, Kim J (2014) Selective fluorescence assay of aluminum and cyanide ions using chemosensor containing naphthol. RSC Adv 4:18094–18099

    Article  CAS  Google Scholar 

  26. Zhang C, Liu C, Li B, Chen J, Zhang H, Hu Z et al (2015) A new fluorescent turn-onchemodosimeter for cyanide based on dual reversible and irreversible deprotonation of NH and CH groups. New J Chem 39:1968–1973

    Article  CAS  Google Scholar 

  27. Mouradzadegun A, Abadast F (2014) An improved organic/inorganic solid receptor for colorimetric cyanide-chemosensing in water: towards new mechanism aspects, simplistic use and portability. Chem Commun 50:15983–15986

    Article  CAS  Google Scholar 

  28. Jayasudha P, Manivannan R, Elango KP (2015) Simple colorimetric chemodosimeters for selective sensing of cyanide ion in aqueous solution via termination of ICT transition by Michael addition. Sensors Actuators B Chem 221:1441–1448

    Article  CAS  Google Scholar 

  29. Niamnonta N, Khumsrib A, Promchatb A, Tumcharernc G, Sukwattanasinittb M (2014) Novel salicylaldehyde derivatives as fluorescence turn-on sensors for cyanide ion. J Hazard Mater 280:458–463

    Article  Google Scholar 

  30. Lin YD, Peng YS, Su W, Tu CH, Sun CH, Chow TJ (2012) Tetrahedron 68:2523–2526

    Article  CAS  Google Scholar 

  31. Sun Y, Liu Y, Chen M, Guo W (2009) A novel fluorescent and chromogenic probe for cyanide detection in water based on the nucleophilic addition of cyanide to imine group. Talanta 80:996–1000

    Article  CAS  PubMed  Google Scholar 

  32. Zhang C, Ji K, Wang X, Wu H, Liu C (2015) A reversible and selective chemosensor based on intramolecular NH. . .NH(2) hydrogen bonding for cyanide and pH detection. Chem Commun 51:8173–8176

    Article  CAS  Google Scholar 

  33. Gong WT, Zhang QL, Shang L, Gao B, Ning GL (2013) A new principle for selective sensing cyanide anions based on 2-hydroxy-naphthaldeazinecompound. Sens Actuators B Chem 177:322–326

    Article  CAS  Google Scholar 

  34. You GR, Park GJ, Lee SA, Choi YW, Kim YS, Lee JJ, Kim C (2014) A single chemosensor for multiple target anions: the simultaneous detection of CN¯ and OAc¯ in aqueous media. Sensors Actuators B Chem 202:645–655

    Article  CAS  Google Scholar 

  35. Miyaji H, Sessler JL (2001) Off-the-shelf colorimetric anion sensors. Angew Chem 40:154–157

    Article  CAS  Google Scholar 

  36. Na SY, Kim JY, Kim HJ (2013) Colorimetric and fluorometric probe for the highly selective and sensitive detection of cyanide based on coumarinyl oxime. Sensors Actuators B Chem 188:1043–1047

    Article  CAS  Google Scholar 

  37. Jia J, Xue P, Zhang Y, Xu Q, Zhang G, Huang T, Zhang H, Lu R (2014) Fluorescent sensor based on dimesityl boryl thiophene derivative for probing fluoride and cyanide. Tetrahedron 70:5499–5504

    Article  CAS  Google Scholar 

  38. Ding Y, Li T, Zhu W, Xie Y (2012) Highly selective colorimetric sensing of cyanide based on formation of dipyrrin adducts. Org Biomol Chem 10:4201–4207

    Article  CAS  PubMed  Google Scholar 

  39. Anzenbacher P, Tyson DS, Jursikova K, Castellano FN (2002) Luminescence lifetime-based sensor for cyanide and related anions. J Am Chem Soc 124:6232–6232

    Article  CAS  PubMed  Google Scholar 

  40. Zareh Jonaghani M, Zali-Boeini H, Taheri R, Amiri Rudbari H, Askari B (2016) Naphthothiazole-based highly selective and sensitive fluorescent and colorimetric chemosensor for detection of pollutant metal ions. RSC Adv 6:34940–34945

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Isfahan research council for partial financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Zali-Boeini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zali-Boeini, H., Zareh Jonaghani, M. New Fluorescent and Colorimetric Chemosensor for Detection of Cyanide with High Selectivity and Sensitivity in Aqueous Media. J Fluoresc 27, 1035–1040 (2017). https://doi.org/10.1007/s10895-017-2037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2037-y

Keywords

Navigation