Skip to main content
Log in

Nonlinear Interactions of Zinc Phthalocyanine-Graphene Quantum Dots Nanocomposites: Investigation of Effects of Surface Functionalization with Heteroatoms

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This study reports the development of functional optical limiting materials composed of pristine graphene (GQDs), nitrogen-doped (NGQDs) and sulfur-nitrogen co-doped (SNGQDs) graphene quantum dots covalently linked to mono-amino substituted zinc phthalocyanine (Pc). Open aperture Z-scan technique was employed to monitor the behaviour of the conjugates under tightly focussed Gaussian laser beam using a mode-locked Nd:YAG laser delivering 10 nanosecond (FWHM) pulses at 532 nm wavelength. Nonlinear effect due to reverse saturable absorption was the predominant mechanism; and was attributed to the moderately enhanced triplet population. The major factor(s) responsible for the enhanced nonlinearities in the Pc-NGQDs and Pc-SNGQDs was fully described and attributed to the surface defects caused by the presence of heteroatoms of N and S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li Y, Shu H, Wang S, Wang J (2015) Electronic and optical properties of graphene quantum dots: The role of many-body effects. J Phys Chem C 119:4983–4989

    Article  CAS  Google Scholar 

  2. Yamijala SSRKC, Mukhopadhyay M, Pati SK (2015) Linear and nonlinear optical properties of graphene quantum dots: A computational study. J Phys Chem C 119:12079–12087

    Article  CAS  Google Scholar 

  3. Lee MW, Kim J, Suh JS (2015) Characteristics of graphene quantum dots determined by edge structures: three kinds of dots fabricated using thermal plasma jet. RSC Adv 5:67669–67675

    Article  CAS  Google Scholar 

  4. Liu Y, Wu P (2013) Graphene quantum dot hybrids as efficient metal-free electrocatalyst for the oxygen reduction reaction. ACS Appl Mater Interfaces 5:3362–3369

    Article  CAS  PubMed  Google Scholar 

  5. Luk CM, Tang LB, Zhang WF, Yu SF, Teng KS, Lau SP (2012) An efficient and stable fluorescent graphene quantum dot-agar composite as a converting material in white light emitting diodes. J Mater Chem 22:22378–22381

    Article  CAS  Google Scholar 

  6. Liu Q, Guo B, Rao Z, Zhang B, Gong JR (2013) Strong two photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum qots for cellular and deep-tissue imaging. Nano Lett 13:2436–2441

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15–18

    Article  CAS  PubMed  Google Scholar 

  8. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xied Z, Sun Z (2013) Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5:12272–12277

    Article  CAS  PubMed  Google Scholar 

  9. Qu LT, Liu Y, Baek JB, Dai LM (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel Cells. ACS Nano 4:1321–1326

    Article  CAS  PubMed  Google Scholar 

  10. Qu D, Sun Z, Zheng M, Li J, Zhang Y, Zhang G, Zhao H, Liu X, Xie Z (2015) Three colors emission from S, N co-doped graphene quantum dots for visible light H2 production and bioimaging. Adv Op Mater 3:360–367

    Article  CAS  Google Scholar 

  11. Liu Y, Park HG, Lee JH, Seo DS, Kim EM, Heo GS (2015) Electro-optical switching of liquid crystals sandwiched between ion-beam-spurted graphene quantum dots-doped PEDOT:PSS composite layers. Opt Express 23:34071–34081

    Article  PubMed  Google Scholar 

  12. Cho MJ, Park HG, Jeong HC, Lee JW, Jung YH, Kim DH, Kim JH, Lee JW, Seo DS (2014) Superior fast switching of liquid crystal devices using graphene quantum dots. Liq Cryst 14:761–767

    Article  Google Scholar 

  13. Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannnouli I, Aloukos P, Couris S (2015) Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. CARBON 83:173–179

    Article  CAS  Google Scholar 

  14. Imakita K, Ito M, Fujii M, Hayashi S (2009) Ultrafast third order properties of phosphorus-doped Si nanocrystals embedded in phosphosilicate glass thin films. Opt Express 17:7368–7376

    Article  CAS  PubMed  Google Scholar 

  15. Kanbara H, Maruno T, Yamashita A, Matsumoto S, Hayashi T, Konami H, Tanaka N (1996) Third-order nonlinear optical properties of phthalocyanine and fullerene. J Appl Phys 80:3674

    Article  CAS  Google Scholar 

  16. Wang J, Blau WJ (2008) Linear and nonlinear spectroscopic studies of phthalocyanine-carbon nanotube blends. Chem Phys Lett 465:265–271

    Article  CAS  Google Scholar 

  17. Sanusi K, Amuhaya EK, Nyokong T (2014) Enhanced optical limiting behavior of an indium phthalocyanine − single-walled carbon nanotube nomposite: an investigation of the effects of solvents. J Phys Chem C 118:7057–7069

    Article  CAS  Google Scholar 

  18. Zhu J, Li Y, Chen Y, Wang J, Zhang B, Zhang J, Blau WJ (2011) Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. CARBON 49:1900–1905

    Article  CAS  Google Scholar 

  19. Yu X, Zhan C, Huang Y (2012) Synthesis and characterization of new asymmetrical phthalocyanine zinc. Chin J Org Chem 32:770–775

    Article  Google Scholar 

  20. Kudrevich SV, Ali H, van Lier JE (1994) Syntheses of monosulfonated phthalocyanines, benzonaphthoporphyrazines and porphyrins via the Meerwein reaction. J Chem Soc Perkin Trans 1:2767–2774

    Article  Google Scholar 

  21. Achadu OJ, Nyokong T (2016) Interaction of graphene quantum dots with 4-acetamido-2,2,6,6-tetramethylpiperidine-oxyl free radicals: A spectroscopic and fluorimetric study. J Fluoresc 26:283–295

    Article  CAS  PubMed  Google Scholar 

  22. Fashina A, Antunes E, Nyokong T (2013) Characterization and photophysical behavior of phthalocyanines when grafted onto silica nanoparticles. Polyhedron 53:278–285

    Article  CAS  Google Scholar 

  23. Bankole OM, Nyokong T (2016) Nonlinear optical response of a low symmetry phthalocyanine in the presence of gold nanoparticles when in solution or embedded in poly acrylic acid polymer thin films. J Photochem Photobiol A Chem 319–320:8–17

    Article  Google Scholar 

  24. Ogunsipe A, Chen JY, Nyokong T (2004) Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives-effects of substituents and solvents. New J Chem 7:822–827

    Article  Google Scholar 

  25. Tran-Thi TH, Desforge C, Thiec C, Gaspard S (1989) Singlet-singlet and triplettriplet intramolecular transfer processesin a covalently linked porphyrin-phthalocyanine heterodimer. J Phys Chem 93:1226–1233

    Article  CAS  Google Scholar 

  26. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76:1260–1264

    Article  CAS  Google Scholar 

  27. Kubat P, Mosinger J (1996) Photophysical properties of metal complexes of mesotetrakis(4-sulphonatophenyl) porphyrin. J Photochem Photobiol A 96:93–97

    Article  CAS  Google Scholar 

  28. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26:760–769

    Article  CAS  Google Scholar 

  29. Van Stryland EW, Sheik-Bahae M (1998) In: Kuzyk MG, Dirk CW (eds) Characterization techniques and tabulations for organic nonlinear materials. Marcel Dekker, Inc, New York, pp 655–692

    Google Scholar 

  30. Kumar RSS, Rao SV, Giribabu L, Rao DN (2007) Femtosecond and nanosecond nonlinear optical properties of alkyl phthalocyanines studied using Z-scan technique. Chem Phys Lett 447:274–278

    Article  CAS  Google Scholar 

  31. Dini D, Hanack M (2003) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook: physical properties of phthalocyanine-based materials, 17. Academic Press, USA, p 2

    Google Scholar 

  32. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738

    Article  PubMed  Google Scholar 

  33. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102–5110

    Article  CAS  PubMed  Google Scholar 

  34. Achar BN, Lokesh KS (2004) Studies on phthalocyanine sheet polymers. J Organomet Chem 689:2601–2605

    Article  CAS  Google Scholar 

  35. Zheng XT, Ananthanarayanan KQ, Luo P, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    Article  CAS  PubMed  Google Scholar 

  36. Qu D, Zheng M, Zhang L, Zhao H, Xie Z, Jing X, Raid EH, Fan H, Sun Z (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep 4:5294–5303

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zenkevich EI, Stupak AP, Kowerko D, Von Borczyskowski C (2012) Influence of single dye molecules on temperature and time dependent optical properties of CdSe/ZnS quantum dots: Ensemble and single nanoassembly detection. Chem Phys 406:21–29

    Article  CAS  Google Scholar 

  38. Blaudeck T, Zenkevich EI, Cichos F, Von Borczyskowski C (2008) Probing wave functions at semiconductor quantum-dot surfaces by non-FRET photoluminescence quenching. J Phys Chem C 112:20251–20257

    Article  CAS  Google Scholar 

  39. Lakowicz JR (2009) Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York, p 243

    Google Scholar 

  40. Corr SA, Byrne AO’, Gun’ko YK, Ghosh S, Brougham DF, Mitchell S, Volkov Y, Prina-Mello A (2006) Magnetic-fluorescent nanocomposites for biomedical multitasking. Chem Commun 4474–4476. doi:10.1039/B610746J

  41. Galstyan A, Riehemann K, Schäfers M, Faust A (2016) A combined experimental and computational study of the substituent effect on the photodynamic efficacy of amphiphilic Zn(II)phthalocyanines. J Mater Chem B 4:5683–5691

    Article  CAS  Google Scholar 

  42. Englman R, Jortner J (1970) The energy gap law for non-radiative decay in large molecules. J Lumin 12:134–142

    Article  Google Scholar 

  43. Darwent JR, Douglas P, Harriman A, Porter G, Richoux MC (1982) Metal phthalocyanines and porphyrin for reduction of water to hydrogen. Coord Chem Rev 44:83–126

    Article  CAS  Google Scholar 

  44. Sheik-Bahae M, Said AA, Stryland EW (1989) High-sensitivity, single-beam n2 measurements. Opt Lett 14:955–957

    Article  CAS  PubMed  Google Scholar 

  45. Dini D, Yang GY, Hanack M (2003) Perfluorinated phthalocyanines for optical limiting: evidence for the direct correlation between substituent electron withdrawing character and the nonlinear optical effect. J Chem Phys 119:4857–4864

    Article  CAS  Google Scholar 

  46. de la Torre G, Vázquez P, Agulló-López F, Torres T (2004) Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem Rev 104:3723–3750

    Article  PubMed  Google Scholar 

  47. Sutherland RL (2003) In handbook of nonlinear optics, 2nd edn. Marcel Dekker, New York, Revised and expanded

    Book  Google Scholar 

  48. Shirk JS, Flom SR, Pong RGS, Heckmann H, Hanack M (2000) Effect of axial substitution on the optical limiting properties of indium phthalocyanines. J Phys Chem 104:1438–1449

    Article  CAS  Google Scholar 

  49. Blau W, Byrne H, Dennis WM, Kelly JM (1985) Reverse saturable absorption in tetraphenylporphyrins. Opt Commun 56:25–29

    Article  CAS  Google Scholar 

  50. Shirk JS, Flom SR, Lindle JR, Bartoli FJ, Snow AW, Boyle ME (1994) Nonunear Absorption in Phthalocyanines and Naphthalocyanines. MRS Symp Proc 328:661–666

    Article  CAS  Google Scholar 

  51. Perry JW, Mansour K, Lee IYS, Wu XL, Bedworth PV, Chen CT, Marder SR, Ng D, Miles P, Wada T, Tian M, Sasabe H (1996) Organic optical limiter with a strong nonlinear absorptive response. Science 273:1533–1536

    Article  CAS  Google Scholar 

  52. Gu J, Zhang X, Pang A, Yang J (2016) Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots. Nanotechnology 27:165704

    Article  PubMed  Google Scholar 

  53. Li X, Lau SP, Tang L, Ji R, Yang P (2014) Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots. Nanoscale 6:5323–5328

    Article  CAS  PubMed  Google Scholar 

  54. Cao L, Meziani MJ, Sahu S, Sun YP (2012) Photoluminescence properties of graphene versus other carbon nanomaterials. Acc Chem Res 46:171–180

    Article  PubMed  Google Scholar 

  55. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24:2037–2041

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798

    Article  CAS  PubMed  Google Scholar 

  57. Zhang F, Liu F, Wang C, Xin X, Liu J, Guo S, Zhang J (2016) Effect of lateral size of graphene quantum dots on their properties and application. ACS Appl Mater Interfaces 8:2104–2110

    Article  CAS  PubMed  Google Scholar 

  58. Hassan M, Haque E, Reddy KR, Minett AI, Chenc J, Gomes VG (2014) Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6:11988–11994

    Article  CAS  PubMed  Google Scholar 

  59. Dini D, Vagin S, Hanack M, Amendola V, Meneghetti M (2005) Nonlinear optical effects related to saturable and reverse saturable absorption by subphthalocyanines at 532 nm. Chem Commun 3796–3798. doi:10.1039/B502359A

Download references

Acknowledgements

This work was supported by the Department of Science and Technology (DST)/Nanotechnology (NIC) and National Research Foundation (NRF) of South Africa through DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology (UID 62620) and Rhodes University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tebello Nyokong.

Ethics declarations

There are no potential conflicts of interest with regard to this manuscript. The funders have agreed to publication. The research does not involve human participants and/or Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankole, O.M., Achadu, O.J. & Nyokong, T. Nonlinear Interactions of Zinc Phthalocyanine-Graphene Quantum Dots Nanocomposites: Investigation of Effects of Surface Functionalization with Heteroatoms. J Fluoresc 27, 755–766 (2017). https://doi.org/10.1007/s10895-016-2008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-2008-8

Keywords

Navigation