Skip to main content
Log in

A Fluorescent Sensor for Al(III) and Colorimetric Sensor for Fe(III) and Fe(II) Based on a Novel 8-Hydroxyquinoline Derivative

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel 8-hydroxyquinoline-based fluorescent and colorimetric chemosensor was designed, synthesized and fully characterized. The sensor showed high selectivity and sensitivity toward Al3+ over other tested cations in EtOH/H2O (1:99, v/v) medium. The increase in fluorescence intensity was linearly proportional to the concentration of Al3+ with a detection limit of 7.38 × 10−6 M. Moreover, the sensor exhibited an obvious color change from yellow to black in the presence of Fe2+ and Fe3+ in EtOH/THF (99:1, v/v) solution. The absorbance changes showed a linear response to iron ions with the detection limits of 4.24 × 10−7 M and 5.60 × 10−7 M for Fe2+ and Fe3+, respectively. Thus, this chemosensor provides a novel approach for selectively recognition of Al3+, Fe3+ and Fe2+ among environmentally relevant metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3
Fig. 12

Similar content being viewed by others

References

  1. Banks WA, Kastin AJ (1989) Aluminum-Induced neurotoxicity: Alterations in membrane function at the blood-brain barrier. Neurosci Biobehav Rev 13(1):47–53

    Article  CAS  PubMed  Google Scholar 

  2. Nayak P (2002) Aluminum: impacts and disease. Environ Res 89(2):101–115

    Article  CAS  PubMed  Google Scholar 

  3. Good PF, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593(2):343–346

    Article  CAS  PubMed  Google Scholar 

  4. Walton JR (2007) An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem 101(9):1275–1284

    Article  CAS  PubMed  Google Scholar 

  5. Darbre PD (2005) Aluminium, antiperspirants and breast cancer. J Inorg Biochem 99(9):1912–1919

    Article  CAS  PubMed  Google Scholar 

  6. Alvim MN, Ramos FT, Oliveira DC, Isaias RM, Franca MG (2012) Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa L.) seedlings. J Biosci 37(6):1079–1088

    Article  CAS  PubMed  Google Scholar 

  7. Poléo ABS (1995) Aluminium polymerization — A mechanism of acute toxicity of aqueous aluminium to fish. Aquat Toxicol 31(4):347–356

    Article  Google Scholar 

  8. Liu X, Theil EC (2005) Ferritins: Dynamic management of biological iron and oxygen chemistry. Acc Chem Res 38(3):167–175

    Article  CAS  PubMed  Google Scholar 

  9. Kustka A, Carpenter EJ, Sañudo-Wilhelmy SA (2002) Iron and marine nitrogen fixation: progress and future directions. Res Microbiol 153(5):255–262

    Article  CAS  PubMed  Google Scholar 

  10. Wójciak RW, Mojs E, Stanislawska-Kubiak M (2014) The occurrence of iron-deficiency anemia in children with type 1 diabetes. J Investig Med 62(6):865–867

  11. Simcox JA, McClain DA (2013) Iron and diabetes risk. Cell Metab 17(3):329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weinreb O, Mandel S, Youdim MBH, Amit T (2013) Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radic Biol Med 62:52–64

    Article  CAS  PubMed  Google Scholar 

  13. Torti SV, Torti FM (2013) Iron and cancer: more ore to be mined. Nat Rev Cancer 13(5):342–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Unsal YE, Soylak M, Tuzen M, Hazer B (2015) Determination of lead, copper, and iron in cosmetics, water, soil, and food using polyhydroxybutyrate-B-polydimethyl siloxane preconcentration and flame atomic absorption spectrometry. Anal Lett 48(7):1163–1179

    Article  CAS  Google Scholar 

  15. Ulusoy Hİ, Gürkan R, Aksoy Ü, Akçay M (2011) Development of a cloud point extraction and preconcentration method for determination of trace aluminum in mineral waters by FAAS. Microchem J 99(1):76–81

    Article  CAS  Google Scholar 

  16. Sooriyaarachchi M, Gailer J (2010) Removal of Fe3+ and Zn2+ from plasma metalloproteins by iron chelating therapeutics depicted with SEC-ICP-AES. Dalton Trans 39(32):7466–7473

    Article  CAS  PubMed  Google Scholar 

  17. Frankowski M, Zioła-Frankowska A, Kurzyca I, Novotný K, Vaculovič T, Kanický V, Siepak M, Siepak J (2011) Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes. Environ Monit Assess 182(1–4):71–84

    Article  CAS  PubMed  Google Scholar 

  18. Das S, Dutta M, Das D (2013) Fluorescent probes for selective determination of trace level Al3+: Recent developments and future prospects. Anal Methods 5(22):6262–6285

    Article  CAS  Google Scholar 

  19. Sahoo SK, Sharma D, Bera RK, Crisponi G, Callan JF (2012) Iron(III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41(21):7195–7227

    Article  CAS  PubMed  Google Scholar 

  20. Yi C, Song B, Tian W, Cui X, Qi Q, Jiang W, Qi Z, Sun Y (2014) Fluorescent sensor of fluorene derivatives having phosphonic acid as a fluorogenic ionophore: Synthesis and static quenched properties for Fe(III). Tetrahedron Lett 55(37):5119–5123

    Article  CAS  Google Scholar 

  21. Zhang G, Lu B, Wen Y, Lu L, Xu J (2012) Facile fabrication of a cost-effective, water-soluble, and electrosynthesized poly(9-aminofluorene) fluorescent sensor for the selective and sensitive detection of Fe(III) and inorganic phosphates. Sensors Actuators B Chem 171–172:786–794

    Article  Google Scholar 

  22. Huang L, Hou F, Cheng J, Xi P, Chen F, Bai D, Zeng Z (2012) Selective off-on fluorescent chemosensor for detection of Fe3+ ions in aqueous media. Org Biomol Chem 10(48):9634–9638

    Article  CAS  PubMed  Google Scholar 

  23. Jiménez-Sánchez A, Ortiz B, Navarrete VO, Flores JC, Farfán N, Santillan R (2015) A dual-model fluorescent Zn2+/Cu2+ ions sensor with in-situ detection of S2−/(PO4) and colorimetric detection of Fe2+ ion. Inorg Chim Acta 429:243–251

    Article  Google Scholar 

  24. Santhoshkumar S, Velmurugan K, Prabhu J, Radhakrishnan G, Nandhakumar R (2016) A naphthalene derived Schiff base as a selective fluorescent probe for Fe2+. Inorg Chim Acta 439:1–7

    Article  CAS  Google Scholar 

  25. Singh G, Singh J, Mangat SS (2015) Design of selective 8-methylquinolinol based ratiometric Fe2+ and Fe3+/H2PO4 fluorescent chemosensor mimicking NOR and IMPLICATION logic gates. J Lumin 165:123–129

    Article  CAS  Google Scholar 

  26. Kim KB, Kim H, Song EJ, Kim S, Noh I, Kim C (2013) A cap-type Schiff base acting as a fluorescence sensor for zinc(II) and a colorimetric sensor for iron(II), copper(II), and zinc(II) in aqueous media. Dalton Trans 42(47):16569–16577

    Article  CAS  PubMed  Google Scholar 

  27. Li CR, Liao ZC, Qin JC, Wang BD, Yang ZY (2015) Study on 2-acetylpyrazine (pyridine-2′-acetyl) Hydrazone as a fluorescent sensor for Al3+. J Lumin 168:330–333

    Article  Google Scholar 

  28. Chen CH, Liao DJ, Wan CF, Wu AT (2013) A turn-on and reversible Schiff base fluorescence sensor for Al3+ ion. Analyst 138(9):2527–2530

    Article  CAS  PubMed  Google Scholar 

  29. Gou C, Qin SH, Wu HQ, Wang Y, Luo J, Liu XY (2011) A highly selective chemosensor for Cu2+ and Al3+ in two different ways based on salicylaldehyde Schiff. Inorg Chem Commun 14(10):1622–1625

    Article  CAS  Google Scholar 

  30. Wang G-q, Qin J-c, Li C-R, Yang Z-y (2015) A highly selective fluorescent probe for Al3+ based on quinoline derivative. Spectrochim Acta A 150:21–25

  31. An J, Li T, Wang B, Yang Z, Yan M (2014) An off-on fluorescent sensor with high selectivity and sensitivity for Fe(III). J Coord Chem 67(5):921–928

    Article  CAS  Google Scholar 

  32. Qin JC, Cheng XY, Fang R, Wang MF, Yang ZY, Li TR, Li Y (2016) Two Schiff-base fluorescent sensors for selective sensing of aluminum (III): Experimental and computational studies. Spectrochim Acta A 152:352–357

    Article  CAS  Google Scholar 

  33. Fan L, Li TR, Wang BD, Yang ZY, Liu CJ (2014) A colorimetric and turn-on fluorescent chemosensor for Al(III) based on a chromone Schiff-base. Spectrochim Acta A 118:760–764

    Article  CAS  Google Scholar 

  34. Qin J-c, Li T-r, Wang B-d, Yang Z-y, Fan L (2014) Fluorescent sensor for selective detection of Al3+ based on quinoline–coumarin conjugate. Spectrochim Acta A 133:38–43

  35. Sen S, Sarkar S, Chattopadhyay B, Moirangthem A, Basu A, Dhara K, Chattopadhyay P (2012) A ratiometric fluorescent chemosensor for iron: discrimination of Fe2+ and Fe3+ and living cell application. Analyst 137(14):3335–3342

    Article  CAS  PubMed  Google Scholar 

  36. Aydin Z, Wei Y, Guo M (2012) A highly selective rhodamine based turn-on optical sensor for Fe3+. Inorg Chem Commun 20:93–96

    Article  CAS  Google Scholar 

  37. Devaraj S, Tsui YK, Chiang CY, Yen YP (2012) A new dual functional sensor: Highly selective colorimetric chemosensor for Fe3+ and fluorescent sensor for Mg2+. Spectrochim Acta A 96:594–599

    Article  CAS  Google Scholar 

  38. Choi YW, Park GJ, Na YJ, Jo HY, Lee SA, You GR, Kim C (2014) A single schiff base molecule for recognizing multiple metal ions: A fluorescence sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III). Sensors Actuators B Chem 194:343–352

  39. Bronson RT, Bradshaw JS, Savage PB, Fuangswasdi S, Lee SC, Krakowiak KE, Izatt RM (2001) Bis-8-hydroxyquinoline-armed diazatrithia-15-crown-5 and diazatrithia-16-crown-5 ligands: Possible fluorophoric metal ion sensors. J Organomet Chem 66(14):4752–4758

    Article  CAS  Google Scholar 

  40. Farruggia G, Iotti S, Prodi L, Montalti M, Zaccheroni N, Savage PB, Trapani V, Sale P, Wolf FI (2006) 8-Hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells. J Am Chem Soc 128(1):344–350

    Article  CAS  PubMed  Google Scholar 

  41. Song EJ, Park GJ, Lee JJ, Lee S, Noh I, Kim Y, Kim S-J, Kim C, Harrison RG (2015) A fluorescence sensor for Zn2+ that also acts as a visible sensor for Co2+ and Cu2+. Sensors Actuators B Chem 213:268–275

  42. Vaswani KG, Keränen MD (2009) Detection of aqueous mercuric ion with a structurally simple 8-hydroxyquinoline derived on-off fluorosensor. Inorg Chem 48(13):5797–5800

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Y, Lin Z, Liao H, Duan C, Meng Q (2006) A highly selective fluorescent chemosensor for Al3+ derivated from 8-hydroxyquinoline. Inorg Chem Commun 9(9):966–968

    Article  CAS  Google Scholar 

  44. Jiang XH, Wang BD, Yang ZY, Liu YC, Li TR, Liu ZC (2011) 8-Hydroxyquinoline-5-carbaldehyde Schiff-base as a highly selective and sensitive Al3+ sensor in weak acid aqueous medium. Inorg Chem Commun 14(8):1224–1227

    Article  CAS  Google Scholar 

  45. Fan L, Jiang XH, Wang BD, Yang ZY (2014) 4-(8′-Hydroxyquinolin-7′-yl)methyleneimino-1-phenyl-2,3-dimethyl-5-pyzole as a fluorescent chemosensor for aluminum ion in acid aqueous medium. Sensors Actuators B Chem 205:249–254

  46. Ramos ML, Justino LLG, Salvador AIN, De Sousa ARE, Abreu PE, Fonseca SM, Burrows HD (2012) NMR, DFT and luminescence studies of the complexation of Al(III) With 8-hydroxyquinoline-5-sulfonate. Dalton Trans 41(40):12478–12489

    Article  CAS  PubMed  Google Scholar 

  47. Pierre J-L, Baret P, Serratrice G (2003) Hydroxyquinolines as iron chelators. Curr Med Chem 10:1077–1084

    Article  CAS  PubMed  Google Scholar 

  48. Li Z, Li H, Shi C, Zhang W, Zhou W, Wei L, Yu M (2016) Naked-eye-based highly selective sensing of Fe3+ and further for PPi with nano copolymer film. Sensors Actuators B Chem 226:127–134

  49. Zarabadi-Poor P, Badiei A, Yousefi AA, Barroso-Flores J (2013) Selective optical sensing of Hg(II) in aqueous media by H-Acid/SBA-15: A combined experimental and theoretical study. J Phys Chem C 117(18):9281–9289

    Article  CAS  Google Scholar 

  50. Karimi M, Badiei A, Mohammadi Ziarani G (2015) A novel naphthalene-immobilized nanoporous SBA-15 as a highly selective optical sensor for detection of Fe3+ in water. J Fluoresc 25(5):1297–1302

    Article  CAS  PubMed  Google Scholar 

  51. Afshani J, Badiei A, Karimi M, Lashgari N, Mohammadi Ziarani G (2016) A single fluorescent sensor for Hg2+ and discriminately detection of Cr3+ and Cr(VI). J Fluoresc 26:263–270

    Article  CAS  PubMed  Google Scholar 

  52. Karimi M, Badiei A, Mohammadi Ziarani G (2015) A single hybrid optical sensor based on nanoporous silica type SBA-15 for detection of Pb2+ and I in aqueous media. RSC Adv 5(46):36530–36539

    Article  CAS  Google Scholar 

  53. Wang F, Peng R, Sha Y (2008) Selective dendritic fluorescent sensors for Zn(II). Molecules 13(4):922–930

    Article  CAS  PubMed  Google Scholar 

  54. Maity D, Govindaraju T (2010) Conformationally constrained (coumarin − triazolyl − bipyridyl) click fluoroionophore as a selective Al3+ sensor. Inorg Chem 49(16):7229–7231

    Article  CAS  PubMed  Google Scholar 

  55. Kim S, Noh JY, Kim KY, Kim JH, Kang HK, Nam SW, Kim SH, Park S, Kim C, Kim J (2012) Salicylimine-based fluorescent chemosensor for aluminum ions and application to bioimaging. Inorg Chem 51(6):3597–3602

    Article  CAS  PubMed  Google Scholar 

  56. Qin JC, Yang ZY (2015) Selective fluorescent sensor for Al3+ using a novel quinoline derivative in aqueous solution. Synth Metals 209:570–576

  57. Bardez E, Devol I, Larrey B, Valeur B (1997) Excited-state processes in 8-hydroxyquinoline: Photoinduced tautomerization and solvation effects. J Phys Chem B 101(39):7786–7793

    Article  CAS  Google Scholar 

  58. Huston ME, Haider KW, Czarnik AW (1988) Chelation enhanced fluorescence in 9,10-bis[[(2-(dimethylamino)ethyl)methylamino]methyl]anthracene. J Am Chem Soc 110(13):4460–4462

    Article  CAS  Google Scholar 

  59. Bronson RT, Montalti M, Prodi L, Zaccheroni N, Lamb RD, Dalley NK, Izatt RM, Bradshaw JS, Savage PB (2004) Origins of ‘on–off’ fluorescent behavior of 8-hydroxyquinoline containing chemosensors. Tetrahedron 60(49):11139–11144

    Article  CAS  Google Scholar 

  60. Erdemir S, Kocyigit O, Karakurt S (2015) A new perylene bisimide-armed calix[4]-aza-crown as "turn on" fluorescent sensor for Hg2+ ion and its application to living cells. Sensors Actuators B Chem 220:381–388

    Article  CAS  Google Scholar 

  61. Afshani J, Badiei A, Lashgari N, Mohammadi Ziarani G (2016) A simple nanoporous silica-based dual mode optical sensor for detection of multiple analytes (Fe3+, Al3+ and CN) in water mimicking XOR logic gate. RSC Adv 6(7):5957–5964

    Article  CAS  Google Scholar 

  62. Meier MAR, Schubert US (2005) Fluorescent sensing of transition metal ions based on the encapsulation of dithranol in a polymeric core shell architecture. Chem Commun. doi:10.1039/b505409e

  63. Hao E, Meng T, Zhang M, Pang W, Zhou Y, Jiao L (2011) Solvent dependent fluorescent properties of a 1,2,3-triazole linked 8-hydroxyquinoline chemosensor: tunable detection from zinc(II) to iron(III) in the CH3CN/H2O system. J Phys Chem A 115(29):8234–8241

Download references

Acknowledgments

The authors thank the research council of University of Tehran for financial support.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Badiei.

Electronic Supplementary Material

ESM 1

(DOCX 742 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashgari, N., Badiei, A. & Mohammadi Ziarani, G. A Fluorescent Sensor for Al(III) and Colorimetric Sensor for Fe(III) and Fe(II) Based on a Novel 8-Hydroxyquinoline Derivative. J Fluoresc 26, 1885–1894 (2016). https://doi.org/10.1007/s10895-016-1883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1883-3

Keywords

Navigation