Skip to main content
Log in

Synthesis of 2-Mercaptonicotinic Acid-Capped CdSe Quantum Dots and its Application to Spectrofluorometric Determination of Cr(VI) in Water Samples

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The CdSe quantum dots (QDs) capped with 2-mercaptonicotinic acid (H2MN) were prepared through a controllable process at 80 °C. The prepared QDs were characterized by XRD, TEM, IR, UV–Vis and fluorescence (FL) techniques. It was found that the QDs were nearly mono-disperse with the diameters in the range of 8–10 nm. These QDs are capable to exhibit strong FL even in concentrated acidic media. They exhibit an enhanced fluorescence in the presence of Cr(VI), which was used for the determination of Cr(VI) in water samples. The linear range was found to be 1 × 10−7–6.0 × 10−6 M with the RSD and DL of 0.92 % and 5 × 10−8 M, respectively. Except that Ca2+ and Fe3+ which can be eliminated through a simple precipitation process, the other co-existent ions present in natural water were not interfered. The recoveries obtained for the added amounts of Cr(VI) were in the range of 96.9–103.2 %, which denote on application of the method, satisfactorily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chou LYT, Fischer HC, Perrault SD, Chan WCW (2009) Visualizing quantum dots in biological samples using silver staining. Anal Chem 81:4560–4565

    Article  CAS  PubMed  Google Scholar 

  2. Xu X, Liu X, Nie Z, Pan Y, Guo M, Yao S (2011) Label-free fluorescent detection of protein kinase activity based on the aggregation behavior of unmodified quantum dots. Anal Chem 83:52–59

    Article  CAS  PubMed  Google Scholar 

  3. Cui R, Pan HC, Zhu JJ, Chen HY (2007) Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal Chem 79:8494–8499

    Article  CAS  PubMed  Google Scholar 

  4. Hosseini MS, Jahanbani H (2013) Synthesis of CdS nanoparticles quantum dots capped by 2,2-dithiodibenzoic acid and study of its interaction with some transition metal ions. J Lumin 140:65–70

    Article  CAS  Google Scholar 

  5. Hosseini MS, Nazemi S (2013) Preconcentration determination of arsenic species by sorption of As(V) on Amberlite IRA-410 coupled with fluorescence quenching of L-cysteine capped CdS nanoparticles. Analyst 138:5769–5776

    Article  CAS  PubMed  Google Scholar 

  6. Hosseini MS, Blador F (2014) A novel spectrofluorometric method for the determination of arsenic in human hair using Dy2O3-doped CeO2 nanoparticles. Analyst 139:5007–5013

    Article  CAS  PubMed  Google Scholar 

  7. Hosseini MS, Pirouz A (2014) Study of fluorescence quenching of mercaptosuccinic acid-capped CdS quantum dots in the presence of some heavy metal ions and its application to Hg(II) ion determination. Luminescence 29:798–804

    Article  CAS  Google Scholar 

  8. Raffaelle RP, Castro SL, Hepp AF, Bailey SG (2002) Quantum dot solar cells. Progr Photovolt Res Appl 10:433–439

    Article  CAS  Google Scholar 

  9. Vassiltsova OV, Zhao Z, Petrukhina MA, Carpenter MA (2007) Surface-functionalized CdSe quantum dots for the detection of hydrocarbons. Sensor Actuat B-Chem 123:522–529

    Article  CAS  Google Scholar 

  10. Sharma SN, Kumar U, Singh VN, Mehta BR, Kakkar R (2010) Surface modification of CdSe quantum dots for biosensing applications: role of ligands. Thin Solid Film 519:1202–1212

    Article  CAS  Google Scholar 

  11. Nosea K, Fujita H, Omata T, Otsuka-Yao-Matsuoa S, Nakamura H, Maeda H (2007) Chemical role of amines in the colloidal synthesis of CdSe quantum dots and their luminescence properties. J Lumin 126:21–26

    Article  Google Scholar 

  12. Jian W, Zhuang J, Yang W, Bai Y (2007) Improved photoluminescence of ZnS:Mn nanocrystals by microwave assisted growth of ZnS shell. J Lumin 126:735–740

    Article  CAS  Google Scholar 

  13. Koneswaran M, Narayanaswamy R (2009) l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensor Actuator B-Chem 139:104–109

    Article  CAS  Google Scholar 

  14. Dzaglia MM, Canpean V, Iosin M, Mohoub MA, Astilean S (2010) Study of the interaction between CdSe/ZnS core-shell quantum dots and bovine serum albumin by spectroscopic techniques. J Photochem Photobio A 215:118–122

    Article  Google Scholar 

  15. Cheng Q, Dong H (2005) Solvent sublation using dithizone as a ligand for determination of trace elements in water samples. Microchim Acta 150:59–65

    Article  CAS  Google Scholar 

  16. Chung J, Burau RG, Zasoski RJ (2001) Chromate generation by chromate depleted subsurface materials. Water Air Soil Pollut 128:407–417

    Article  CAS  Google Scholar 

  17. Cranston RE, Murray JW (1978) The determination of chromium species in natural waters. Anal Chim Acta 99:275–282

    Article  CAS  Google Scholar 

  18. Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic and Professional, London, pp 368–372

    Book  Google Scholar 

  19. Myers CR, Myers JM, Carstens BP, Antholine WE (2000) Reduction of chromium(VI) to chromium(V) by human microsomal enzymes: effects of iron and quinones. Toxic Subst Mech 19:25–51

    Article  CAS  Google Scholar 

  20. Kiran K, Kumar KS, Prasad B, Suvardhan K, Babu LR, Janardhanam K (2008) Speciation determination of chromium(III) and (VI) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS). J Hazard Mater 150:582–586

    Article  CAS  PubMed  Google Scholar 

  21. Safavi A, Maleki N, Shahbaazi HR (2006) Indirect determination of hexavalent chromium ion in complex matrices by adsorptive stripping voltammetry at a mercury electrode. Talanta 68:1113–1119

    Article  CAS  PubMed  Google Scholar 

  22. El-Shahawi MS, Hassan SSM, Othman AM, Zyada MA, El-Sonbati MA (2005) Chemical speciation of chromium(III, VI) employing extractive spectrophotometry and tetraphenylarsonium chloride or tetraphenylphosphonium bromide as ion-pair reagent. Anal Chim Acta 534:319–326

    Article  CAS  Google Scholar 

  23. Hassan SSM, Abdel-Shafi AA, Mohammed AHK (2005) Flow injection fluorimetric determination of chromium(VI) in electroplating baths by luminescence quenching of Tris (2,2-bipyridyl) ruthenium(II). Talanta 67:696–702

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Xia LWT, Dong L, Chen H, Li L (2004) Selective fluorescence determination of chromium(VI) with poly-4-vinylaninline nanoparticles. Spectrochim Acta A 60:2465–2468

    Article  Google Scholar 

  25. Hosseini MS, Blador F (2009) Cr(III)/Cr(VI) speciation determination of chromium in water samples by luminescence quenching of quercetin. J Hazard Mater 165:1062–1067

    Article  CAS  PubMed  Google Scholar 

  26. Hosseini MS, Asadi M (2009) Speciation determination of chromium using 1,4-Diaminoanthraquinone with spectrophotometric and spectrofluorometric methods. Anal Sci 25:807–812

    Article  CAS  PubMed  Google Scholar 

  27. Xiang Y, Mei L, Li N, Tong A (2007) Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement. Anal Chim Acta 581:132–136

    Article  CAS  PubMed  Google Scholar 

  28. Zhu J, Xu S, Wang H, Zhu J, Chen H (2003) Sonochemical synthesis of CdSe hollow spherical assemblies via an in-situ template route. Adv Mater 15:156–159

    Article  CAS  Google Scholar 

  29. Jose R, Zhanpeisov NU, Fukumura H, Baba Y, Ishikawa M (2006) Structure − property correlation of CdSe clusters using experimental results and first-principles DFT calculations. J Am Chem Soc 128:629–636

    Article  CAS  PubMed  Google Scholar 

  30. Coates J (2000) In: Meyers RA (ed) Interpretation of infrared spectra, a practical approach in encyclopedia of analytical chemistry. Wiley, Chichester, pp 10815–10837

    Google Scholar 

  31. Haram SK, Kshirsagar A, Gujarathi YD (2011) Quantum confinement in CdTe quantum dots: investigation through cyclic voltammetry supported by density functional theory (DFT). J Phys Chem C 115:6243–6249

    Article  CAS  Google Scholar 

  32. Mahmoud WE (2012) Functionalized ME-capped CdSe quantum dots based luminescence probe for detection of Ba2+ ions. Sens Actuator B-Chem 164:76–81

    Article  CAS  Google Scholar 

  33. Ciesielski W, Zakrzewski R (1999) Iodimetric determination of 2-mercaptopyridines. Chem Anal (Warsaw) 44:1055–1061

    CAS  Google Scholar 

  34. Read JF, Graves CR, Jackson E (2003) The kinetics and mechanism of the oxidation of the thiols 3-mercapto-1-propane sulfenic acid and 2-mercaptonicotinic acid by potassium ferrate. Inorg Chim Acta 348:41–49

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saeid Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M.S., Khorashahi, S. & Hosseini, N. Synthesis of 2-Mercaptonicotinic Acid-Capped CdSe Quantum Dots and its Application to Spectrofluorometric Determination of Cr(VI) in Water Samples. J Fluoresc 26, 867–874 (2016). https://doi.org/10.1007/s10895-016-1774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1774-7

Keywords

Navigation