Skip to main content
Log in

Photoinduced Electron Transfer from Phenanthrimidazole to Magnetic Nanoparticles

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The dynamics of photoinduced electron injection from (E)-1-(4-methoxyphenyl)-2-styryl-1H-phenanthro [9,10-d]imidazole (MPSPI) synthesised using nano TiO2 as catalyst to Fe2O3 nanocrystal has been studied by FT-IR, absorption, fluorescence and lifetime spectroscopic methods. The binding between nanoparticle and MPSPI is confirmed by binding constant and binding site. The distance between MPSPI and nanoparticle as well as the critical energy transfer distance has been obtained. The free energy change (ΔGet) for electron injection has also been deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hush NS (1985) Distance dependence of electron transfer rates. Coord Chem Rev 64:135–157

    Article  CAS  Google Scholar 

  2. Marcus RA (1989) Relation between charge transfer absorption and fluorescence spectra and the inverted region. J Phys Chem 93:3078–3086

    Article  CAS  Google Scholar 

  3. Gould IR, Young RH, Moody RE, Farid S (1991) Contact and solvent-separated geminate radical ion pairs in electron-transfer photochemistry. J Phys Chem 95:2068–2080

    Article  CAS  Google Scholar 

  4. Gould IR, Noukakis D, Gomez-Jahn L, Young RH, Goodman JL, Farid S (1993) Radiative and nonradiative electron transfer in contact radical-ion pairs. J Chem Phys 176:439–456

    CAS  Google Scholar 

  5. Cortes J, Heitele H, Jortner J (1994) Band-shape analysis of the charge-transfer fluorescence in barrelene-based electron donor-acceptor compounds. J Phys Chem 98:2527–2536

    Article  CAS  Google Scholar 

  6. Mulliken RS, Person WB (1969) Molecular complexes: a lecture and reprint volume. Weinheim, VCH

    Google Scholar 

  7. Nelson J, Haque SA, Klug DR, Durrant JR (2001) Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Phys Rev B 63:205321

    Article  Google Scholar 

  8. deLaszlo SE, Hacker C, Li B, Kim D, Maccoss M, Mantle N, Pivnichny JV, Colwell L, Koch GE, Cascieri MA, Hagmann WK (1999) Potent, orally absorbed glucagon receptor antagonists. Bioorg Med Chem Lett 9:641–646

    Article  CAS  Google Scholar 

  9. Eyers PA, Craxton M, Morrice N, Cohen P, Goedert M (1998) Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem Biol 5:321–328

    Article  CAS  PubMed  Google Scholar 

  10. Newman MJ, Rodarte JC, Benbatoul KD, Romano SJ, Zhang C, Krane S, Moran EJ, Uyeda RT, Dixon R, Guns ES, Mayer LD (2000) Cancer Res 60:2964–2972

    CAS  PubMed  Google Scholar 

  11. Antolini M, Bozzoli A, Ghiron C, Kennedy G, Rossi T, Ursini A (1999) Analogues of 4,5-bis (3,5-dichlorophenyl)-2-trifluoromethyl-1H-imidazole as potential antibacterial agents. Bioorg Med Chem Lett 9:1023–1028

    Article  CAS  PubMed  Google Scholar 

  12. Black JW, Durant GJ, Emmett JC, Ganellin CR (1974) Sulphur-methylene isosterism in the developent of metiamide, a new histamine H2-receptor antagonist. Nature 248:65–67

    Article  CAS  PubMed  Google Scholar 

  13. Uçucu Ü, Karaburun NG, Işikdağ İ (2001) Synthesis and analgesic activity of some 1-benzyl-2-substituted-4,5-diphenyl-1H-imidazole derivatives. Il Farmacol 56:285–290

    Article  Google Scholar 

  14. Wang L, Woods KW, Li Q, Barr KJ, McCroskey RW, Hannick SM, Gherke L, Credo RB, Hui YH, Marsh K, Warner R, Lee JY, Zielinski-Mozng N, Frost D, Rosenberg SH, Sham HL (2002) Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure-activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. J Med Chem 45:1697–1711

    Article  CAS  PubMed  Google Scholar 

  15. Maier T, Schmierer R, Bauer K, Bieringer H, Buerstell H, Sachse B (1989) US Patent 4820335, Chem. Abstr. 111, 1949w.

  16. Siddiqui SA, Narkhede UC, Palimkar SS, Daniel T, Lahoti RJ, Srinivasan KV (2005) Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or α-hydroxyketone. Tetrahedron 61:3539–3546

    Article  CAS  Google Scholar 

  17. Heravi MM, Zakeri M, Karimi N, Saeedi M, Oskooie HA, Hosieni NT (2010) Acidic ionic liquid [(CH2) 4SO3HMIM] [HSO4]: a green media for the simple and straightforward synthesis of 2, 4, 5-trisubstituted imidazoles. Synth Commun 40:1998–2006

    Article  CAS  Google Scholar 

  18. Wang J, Mason R, VanDerveer D, Feng K, Bu XR (2003) Convenient preparation of a novel class of imidazo [1,5-a]pyridines: decisive role by ammonium acetate in chemoselectivity. J Org Chem 68:5415–5418

    Article  CAS  PubMed  Google Scholar 

  19. Sarshar S, Siev D, Mjalli MM (1996) Imidazole libraries on solid support. Tetrahedron Lett 37:835–838

    Article  CAS  Google Scholar 

  20. Gallagher TF, Seibel GL, Kassis S, Laydon JT, Blumenthal MJ, Lee JC, Lee D, Boehm JC, Fier-Thompson SM, Abt JW, Soreson ME, Smietana JM, Hall RF, Garigipati RS, Bender PE, Erhard KF, Krog AJ, Hofmann GA, Sheldrake PL, McDonnell PC, Kumar S, Young PR, Adams JL (1997) Regulation of stress-induced cytokine production by pyridinylimidazoles; inhibition of CSBP kinase. Bioorg Med Chem 5:49–64

    Article  CAS  PubMed  Google Scholar 

  21. Shaabani A, Rahmati A (2006) Silica sulfuric acid as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. J Mol Catal A Chem 249:246–248

    Article  CAS  Google Scholar 

  22. Kantevari S, Vuppalapati SVN, Biradar DO, Nagarapu L (2007) Highly efficient, one-pot, solvent-free synthesis of tetrasubstituted imidazoles using HClO < sub > 4</sub > −SiO < sub > 2</sub > as novel heterogeneous catalyst. J Mol Catal A Chem 266:109–113

    Article  CAS  Google Scholar 

  23. Kidwai M, Mothsra P, Babsal V, Goyal R (2006) Efficient elemental iodine catalyzed one-pot synthesis of 2,4,5-Triarylimidazoles. Monatsh Chem 137:1189–1194

    Article  CAS  Google Scholar 

  24. Wang LM, Wang YH, Tian H, Yao YF, Shao JH, Liu B (2006) Ytterbium triflate as an efficient catalyst for one-pot synthesis of substituted imidazoles through three-component condensation of benzil, aldehydes and ammonium acetate. J Fluor Chem 127:1570–1573

    Article  CAS  Google Scholar 

  25. Sharma GVM, Jyothi Y, Lakshmi PS (2006) Efficient room‐temperature synthesis of triand tetrasubstituted imidazoles catalyzed by ZrCl4. Synth Commun 36:2991–3000

    Article  CAS  Google Scholar 

  26. Balalaie S, Arabanian A (2000) One-pot synthesis of tetrasubstituted imidazoles catalyzed by zeolite HY and silica gel under microwave irradiation. Green Chem 2:274–276

    Article  CAS  Google Scholar 

  27. Heravi MM, Bakhtiari K, Oskooie HA, Taheri S (2007) Synthesis of 2,4,5-triaryl-imidazoles catalyzed by NiCl 2·6H 2O under heterogeneous system. J Mol Catal A Chem 263:279–281

    Article  CAS  Google Scholar 

  28. Sivakumar K, Kathirvel A, Lalitha A (2010) Simple and efficient method for the synthesis of highly substituted imidazoles using zeolite-supported reagents. Tetrahedron Lett 51:3018–3021

    Article  CAS  Google Scholar 

  29. Hayes JF, Mitchell MB, Wicks C (1994) A novel synthesis of 2,4,5-triarylimidazoles. Heterocycles 38:575–585

    Article  CAS  Google Scholar 

  30. Revesz L, Bonne F, Makavou P (1998) Vicinal bromostannanes as novel building blocks for the preparation of di- and trisubstituted imidazoles. Tetrahedron Lett 39:5171–5174

    Article  CAS  Google Scholar 

  31. Liverton NJ, Butcher JW, Claiborne CF, Claremon DA, Libby BE, Nguyen KT, Pitzenberger SM, Selnick HG, Smith GR, Tebben A, Vacca JP, Varga SL, Agarwal L, Dancheck K, Forsyth AJ, Fletcher DS, Frantz B, Hanlon WA, Harper CF, Hofsess SJ, Kostura M, Lin J, Luell S, O’Neill EA, Orevillo CJ, Pang M, Parsons J, Rolando A, Sahly Y, Visco DM, O’Keefe SJ (1999) Design and synthesis of potent, selective, and orally bioavailable tetrasubstituted imidazole inhibitors of p38 mitogen-activated protein kinase. J Med Chem 42:2180–2190

    Article  CAS  PubMed  Google Scholar 

  32. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  33. Tryk DA, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–2376

    Article  CAS  Google Scholar 

  34. Phillips LG, Barbano DM (1997) The influence of Fat substitutes based on protein and titanium dioxide on the sensory properties of lowfat milks1. J Dairy Sci 80:2726–2731

    Article  CAS  Google Scholar 

  35. Hewitt JP (1999) Formulating water-resistant TiO2 sunscreens. Cosmet Toiletries 1999(114):59–63

    Google Scholar 

  36. Palmisano G, Augugliaro V, Pagliaro M, Palmisano L (2007), Photocatalysis: a promising route for 21st century organic chemistry Chem. Commun 3425–3437

  37. Mahalakshmi M, Arabindoo B, Palanichamy M, Murugesan V (2007) Photocatalytic degradation of carbofuran using semiconductor oxides. J Hazard Mater 143:240–245

    Article  CAS  PubMed  Google Scholar 

  38. Abu Tariq M, Faisal M, Muneer M (2005) Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and bismarck brown in aqueous suspension. J Hazard Mater 127:172–179

    Article  CAS  PubMed  Google Scholar 

  39. Mohamed OS, Gaber AE-AM, Abdel-Wahab AA (2002) Photocatalytic oxidation of selected aryl alcohols in acetonitrile. J Photochem Photobiol A 148:205–210

    Article  CAS  Google Scholar 

  40. Sharghi H, Hosseini Sarvari M (2003) TiO2 catalysed One step Beckmann rearrangement of aldehydes and ketones in solvent free conditions. J Chem Res (S) 176

  41. Pasha MA, Manjula K, Jayashankara VP (2006) Titanium dioxide-mediated friedel-crafts acylation of aromatic compounds in solvent-free condition under microwave irradiation. Synth React Inorg Met-Org Chem 36:321–324

    Article  CAS  Google Scholar 

  42. Kassaee MZ, Masrouri H, Movahedi F, Mohammadi R (2010) Helv Chim Acta 93:261–264

    Article  CAS  Google Scholar 

  43. Subba Rao K. V, Srinivas B, Prasad A. R, Subrahmanyam M, (2000), A novel one step photocatalytic synthesis of dihydropyrazine from ethylenediamine and propylene glycol, Chem. Commun. 15331534

  44. Subba Rao KV, Subrahmanyam M (2002) Synthesis of 2-methylpiperazine by photocatalytic reaction in a non-aqueous suspension of semiconductor–zeolite composite catalysts. Photochem Photobiol Sci 1:597–599

    Article  CAS  PubMed  Google Scholar 

  45. Subba Rao KV, Subrahmanyam M (2002) A novel one step photocatalytic synthesis of 2-methyl quinoxaline from o-phenylenediamine and Propyleneglycol over TiO2/zeolite mediated system. Chem Lett 31:234–235

    Article  Google Scholar 

  46. Lang XJ, Ji HW, Chen CC, Ma WH, Zhao JC (2011) Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angew Chem Int Ed 50:3934–3937

    Article  CAS  Google Scholar 

  47. Jing Z, Wang Y, Wu S (2006) Preparation and gas sensing properties of pure and doped γ-Fe2O3 by an anhydrous solvent method. Sensor Actuat B-Chem 113:177–181

    Article  CAS  Google Scholar 

  48. Gao Y, Bao Y, Beerman M, Yasuhara A, Shindo D, Krishman MK (2004) Superstructures of self-assembled cobalt nanocrystals. Appl Phys Lett 84:3361–3363

    Article  CAS  Google Scholar 

  49. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  PubMed  Google Scholar 

  50. Bora DK, Deb P (2009) Fatty acid binding domain mediated conjugation of ultrafine magnetic nanoparticles with albumin protein. Nanoscale Res Lett 4:138–143

    Article  CAS  Google Scholar 

  51. Liu Q, Cui Z, Ma Z, Bian S, Song W, Wan L (2007) Nanotechnology 18:385605, 5pp

    Article  Google Scholar 

  52. Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49:125–170

    Article  CAS  Google Scholar 

  53. Jovalekic C, Zdujic M, Radakovic A, Mitric M (1995) Mechanomechanical synthesis of NiFe2O4 ferrite. Mater Let 24:365–368

    Article  CAS  Google Scholar 

  54. Lee S, Jeong J, Shin S, Kim J, Kim J (2004) Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique. J Magn Magn Mater 282:147–150

    Article  CAS  Google Scholar 

  55. Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596

    Article  CAS  Google Scholar 

  56. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801

    Article  CAS  PubMed  Google Scholar 

  57. Souza FL, Lopes KP, Nascente PP, Leite ER (2009) Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting. Sol Energ Mat Sol C 93:362–368

    Article  CAS  Google Scholar 

  58. Sartoretti CJ, Alexander BD, Solarska R, Rutokowska IA, Augustynski J, Cerny R (2005) Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J Phys Chem B 109:13685–13692

    Article  CAS  Google Scholar 

  59. Hunter GK, O’Young J, Grohe B, Karttunen M, Goldberg HA (2010) The flexible polyelectrolyte hypothesis of protein-biomineral interaction. Langmuir 26:18639–18646

    Article  CAS  PubMed  Google Scholar 

  60. Selvan ST, Tan TTY, Yi DK, Jana NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26:11631–11641

    Article  CAS  PubMed  Google Scholar 

  61. Hu XL, Li GS, Yu JC (2010) Design, fabrication and modification of nanostructured materials for environmental and energy applications. Langmuir 26:3031–3039

    Article  CAS  PubMed  Google Scholar 

  62. Cooperstein AM, Canavan EH (2010) Biological cell detachment from poly (N-isopropyl acrylamide) and its applications. Langmuir 26:7695–7707

    Article  CAS  PubMed  Google Scholar 

  63. Sacher E (2010) Asymmetries in transition metal XPS spectra: metal nanoparticle structure, and interaction with the graphene-structured substrate surface. Langmuir 26:3807–3814

    Article  CAS  PubMed  Google Scholar 

  64. Kathiravan A, Renganathan R (2008) An investigation on electron transfer quenching of zinc(II) meso-tetraphenylporphyrin (ZnTPP) by colloidal TiO2. Spectrochim Acta A 71:1106–1109

    Article  CAS  Google Scholar 

  65. Kathiravan A, Anbazhagan V, Asha Jhonsi M, Renganathan R (2008) Fluorescence quenching of meso-tetrakis (4-sulfonatophenyl) porphyrins by colloidal TiO2. Spectrochim Acta A 70:615–618

    Article  CAS  Google Scholar 

  66. Kathiravan A, Renganathan R (2009) Photoinduced interactions between colloidal TiO2 nanoparticles and calf thymus-DNA. Polyhedron 28:1374–1378

    Article  CAS  Google Scholar 

  67. Kathiravan A, Renganathan R (2009) Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins. J Colloid Interface Sci 331:401–407

    Article  CAS  PubMed  Google Scholar 

  68. Asha Jhonsi M, Kathiravan A, Renganathan R (2009) An investigation on fluorescence quenching of certain porphyrins by colloidal CdS. J Lumin 129:854–860

    Article  CAS  Google Scholar 

  69. Kathiravan A, Renganathan R (2009) Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment. J Colloid Interface Sci 335:196–202

    Article  CAS  PubMed  Google Scholar 

  70. Asha Jhonsi M, Kathiravan A, Renganathan R (2009) Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloids Surf B 72:167–172

    Article  CAS  Google Scholar 

  71. Asha Jhonsi M, Kathiravan A, Renganathan R (2009) Photoinduced interaction between xanthenes dyes and colloidal CdS nanoparticles. J Mol Struct 921:279–284

    Article  CAS  Google Scholar 

  72. Jayabharathi J, Thanikachalam V, Saravanan K (2009) Effect of substituents on the photoluminescence performance of Ir (III) complexes: Synthesis, electrochemistry and photophysical properties. J Photochem Photobiol A 208:13–20

    Article  CAS  Google Scholar 

  73. Jayabharathi J, Thanikachalam V, Venkatesh Perumal M, Srinivasan N (2011) Fluorescence resonance energy transfer from a bio-active imidazole derivative 2-(1-phenyl-1H-imidazo [4,5-f] [1,10] phenanthrolin-2-yl)phenol to a bioactive indoloquinolizine system. Spectrochim Acta, Part A 79:236–244

    Article  CAS  Google Scholar 

  74. Okada S, Okinaka K, Iwawaki H, Furugori M, Hashimoto M, Mukaide T, Kamatani J, Igawa S, Tsuboyama A, Takiguchi T, Ueno K (2005) Substituent effects of iridium complexes for highly efficient red OLEDs. Dalton Trans 9:1583–1590

    Article  PubMed  Google Scholar 

  75. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 (Revision E.01). Gaussian, Inc, Wallingford

    Google Scholar 

  76. Zhou Z, Qian S, Yao S, Zhang Z (2002) Electron transfer in colloidal TiO2 semiconductors sensitized by hypocrellin A. Radiat Phys Chem 65:241–248

    Article  CAS  Google Scholar 

  77. Shin EJ, Kim D (2002) Substituent effect on the fluorescence quenching of various tetraphenylporphyrins by ruthenium tris (2,2′-bipyridine) complex. J Photochem Photobiol A Chem 152:25–31

    Article  CAS  Google Scholar 

  78. Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. M. Dekker, Inc., New York, pp 269–273

    Google Scholar 

  79. Lin B, Fu Z, Jia Y (2001) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phy Lett 79:943–948

    Article  CAS  Google Scholar 

  80. Jayabharathi J, Thanikachalam V, Saravanan K (2009) Effect of substituents on the photoluminescence performance of Ir (III) complexes: synthesis, electrochemistry and photophysical properties. J Photochem Photobiol A Chem 208:13–20

    Article  CAS  Google Scholar 

  81. Cyril L, Earl JK, Sperry WM (1961) Biochemists handbook. E & F.N. Spon, London

    Google Scholar 

  82. Chen G.Z, Huang X.Z, Xu J.G, Wang Z.B, Zhang Z.Z, (1990), Method of fluorescent analysis, second ed., Science Press, Beijing, 126, p. 123, (Chapter 4)

  83. He WY, Li Y, Xue CX, Hu ZD, Chen XG, Sheng FL (2005) Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg Med Chem 13:1837–1845

    Article  CAS  PubMed  Google Scholar 

  84. Hu YJ, Liu Y, Zhang LX (2005) Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct 750:174–178

    Article  CAS  Google Scholar 

  85. Kavarnos GJ, Turro NJ (1986) Photosensitization by reversible electron transfer: theories, experimental evidence and examples. Chem Rev 86:401–449

    Article  CAS  Google Scholar 

  86. Parret S, Savary FM, Fouassier JP, Ramamurthy P (1994) Spin-orbit-coupling-induced triplet formation of triphenylpyrylium ion: a flash photolysis study. J Photochem Photobiol A Chem 83:205–209

    Article  Google Scholar 

  87. Kikuchi K, Niwa T, Takahashi Y, Ikeda H, Miyashi T (1993) Quenching mechanism in a highly exothermic region of the Rehm-Weller relationship for electron-transfer fluorescence quenching. J Phys Chem 97:5070–5073

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors Prof. J. Jayabharathi is thankful to DST (No. SR/S1/IC-73/2010), DRDO (NRB-213/MAT/10-11), UGC (F. No. 36-21/2008 (SR)) and CSIR (NO 3732/NS-EMRII) for providing funds to this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jayabharathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayabharathi, J., Arunpandiyan, A., Thanikachalam, V. et al. Photoinduced Electron Transfer from Phenanthrimidazole to Magnetic Nanoparticles. J Fluoresc 25, 137–145 (2015). https://doi.org/10.1007/s10895-014-1490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1490-0

Keyword

Navigation