Skip to main content

Advertisement

Log in

Synthesis of Novel Carbazole based Styryl: Rational Approach for Photophysical Properties and TD-DFT

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The synthesis and solvatochromic behavior of four novel carbazole based fluorescent styryl dyes were explained. In chlorinated solvents such as DCM and chloroform, these dyes show bathochromic shift in their absorption as well as emission. The styryl dyes 6b and 6c show solid state yellow fluorescence. DFT and TD-DFT computations were performed to study structural, molecular, electronic and photophysical properties of these dyes. The computed absorption and emission wavelength values are found to be in good agreement with the experimental results. The photophysical properties of these 1-styryl carbazole dyes are also compared with the recently reported 3-styrl carbazole dyes. The unique behavior of dye 6d is well explained by its optimized geometry found in the excited state. Ratio of ground to excited state dipole moment of the synthesized novel styryl compounds were calculated by Bakhshiev and Bilot-Kawski correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chilton JA, Goosey MT (1995) Special Polymers for Electronics and Optoelectronics. Champman and Hall, London

    Book  Google Scholar 

  2. Law KY (1993) Chem Rev 93:449–486

    Article  CAS  Google Scholar 

  3. Krotkus S, Kazlauskas K, Miasojedovas A, Gruodis A, Tomkeviciene A, Grazulevicius JV, Jursenas SJ (2012) Phys Chem C 116:7561–7572

    Article  CAS  Google Scholar 

  4. Jiang W, Duan L, Qiao J, Dong G, Zhang D, Wang L, Qiu YJ (2011) Mater Chem 21:4918–4926

    Article  CAS  Google Scholar 

  5. Hsieh BR, Litt MR (1985) Macromolecules 18:1388–1394

    Article  CAS  Google Scholar 

  6. Park JH, Koh T, Do Y, Lee MH, Yoo SJ (2012) Poly Sci Part A 50:2356–2365

    Article  Google Scholar 

  7. Oshima R, Uryu T, Seno M (1985) Macromolecules 18:1043–1045

    Article  CAS  Google Scholar 

  8. Uryu T, Ohkawa H, Oshima R (1987) Macromolecules 20:712–716

    Article  CAS  Google Scholar 

  9. Shattuck MD (1969) Vahtra. U US Patent 3:484,327

    Google Scholar 

  10. Hu CJ, Oshima R, Sato S, Seno MJ (1988) Polym Sci C: Polym Lett 26:441–450

    CAS  Google Scholar 

  11. Ho MS, Barrett C, Paterson J, Esteghamatian M, Natansohn A, Rochon P (1996) Macromolecules 29:4613–4618

    Article  CAS  Google Scholar 

  12. V. D. Gupta: A. B. Tathe; V. S. Padalkar; V. S. Patil; K. R. Phatangare; P. G. Umape; N. Sekar Journal of fluorescence 2013, pp 1-18.

  13. Shen J, Yang X, Huang T, Lin JT, Ke T, Chen W (2007) C.; Ming-Chang P. Yeh. Adv Funct Mater 17:983–995

    Article  CAS  Google Scholar 

  14. Li, L.; Yuan, N.; Wang, P.; Wu, Y.; Song, Y.; Chen, Z.; He, C. J. Phys. Org. Chem. 2012, 2937-2944.

  15. Yang Z, Chi Z, Xu B, Li H, Zhang X, Li X, Liu S, Zhang Y, Xu JJ (2010) Mater Chem 20:7352–7359

    Article  CAS  Google Scholar 

  16. Leclerc N, Michaud A, Sirois K, Morin JF, Leclerc M (2006) Adv Funct Mater 16:1694–1704

    Article  CAS  Google Scholar 

  17. Blouin N, Michaud A, Leclerc M (2007) Adv Mater 19:2295–2300

    Article  CAS  Google Scholar 

  18. Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc MJ (2008) Am Chem Soc 130:732–742

    Article  CAS  Google Scholar 

  19. Zou Y, Gendron D, Badrou-Aïch R, Najari A, Tao Y, Leclerc M (2009) Macromolecules 42:2891–2894

    Article  CAS  Google Scholar 

  20. Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Nat Photonics 3:297–303

    Article  CAS  Google Scholar 

  21. Lai H, Hong J, Liu P, Yuan C (2012) Li. Y.; Fang, Q. RSC Advances 2:2427–2432

    Article  CAS  Google Scholar 

  22. Wakim S, Beaupré S, Blouin N, Aich B, Rodman S, Gaudiana R, Tao Y, Leclerc MJ (2009) Mater Chem 19:5351–5358

    Article  CAS  Google Scholar 

  23. Chang CC, Kuo IC, Lin JJ, Lu YC, Chen CT, Back HT, Lou PJ, Chang TC (2004) Chem Biodivers 1:1377–1384

    Article  CAS  PubMed  Google Scholar 

  24. Fei X, Gu Y, Li C, Yang XJ (2012) Fluoresc 22:807–814

    Article  CAS  Google Scholar 

  25. Lu M, Zhu Y, Ma K, Cao L, Wang K (2012) Spectrochim Acta A Mol Biomol Spectrosc 95:128–134

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Q, Gao Y, Zhang S, Wu J, Zhou H, Yang J (2012) Taob.; Tia, Y. Dalton Trans 41:7067–7072

    Article  CAS  PubMed  Google Scholar 

  27. Eum SJ, Kwon HJ, Kim SM, Yoon SS (2011) WO 2001/105700 A1

    Google Scholar 

  28. Ramkumar S, Manoharan S, Anandan S (2012) Dyes Pigm 94:503–511

    Article  CAS  Google Scholar 

  29. Li L, Wu Y, Zhou Q, Chunying He CJ (2012) Phys Org Chem 25:362–372

    Article  CAS  Google Scholar 

  30. Yang Z, Zhao N, Sun Y, Miao F, Liu Y, Liu X, Zhang Y, Ai W, Song S, Shen X, Yu X, Sun J, Wong W (2012) Chem Commun 48:3442–3444

    Article  CAS  Google Scholar 

  31. Gupta VD, Padalkar VS, Phatangare KR, Patil VS, Umape PG, Sekar N (2011) Dyes Pigm 88:378–384

    Article  CAS  Google Scholar 

  32. Gupta VD, Tathe AB, Padalkar VS, Patil VS, Phatangare KR, Umape PG, Ramasami P.Sekar NJ (2012) Fluoresc 22:807–814

    Article  Google Scholar 

  33. Vidya S, Ravikumar C, Hubert JI, Kumaradhas P, Devipriyac B, Raju K. Vibrational spectra and structural studies of nonlinear optical crystal ammonium D, L-tartrate: a density functional theoretical Approach. J Raman Spectrosc 2011; 42:676e84.

  34. Treutler O, Ahlrichs R. Efficient molecular numerical integration schemes. J Chem Phys 1995; 102:346e54.

  35. Hehre WJ, Radom L (1986) Schleyer PvR, Pople J. Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  36. Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. ChemPhys Lett 1996; 256:454e64

  37. Furche F, Rappaport D (2005) Density functional theory for excited states: equilibrium structure and electronic spectra. In: Olivucci M (ed) Compu-tational Photochemistry, vol 16. Elsevier, Amsterdam [Chapter 3]

    Google Scholar 

  38. Valeur B (2001) Molecular fluorescence: principles and applications. Weinheim, Wiley-VCH Verlag

    Book  Google Scholar 

  39. Cossi M, Barone V, Cammi R, Tomasi J. Ab initio study of solvated mole-cules: a new implementation of the polarizable continuum model. Chem Phys Lett 1996; 255:327e35

  40. Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum salvation models. Chem Rev 2005; 105:2999e3094.

  41. Umape P; Gawale Y; Sekar N. J. Fluoresc. (in press) DOI 10.1007/s10895-014-1389-9

  42. Bakhshiev NG (1964) Opt Spektrosk 16:821–832

    CAS  Google Scholar 

  43. Kawski A (1966) Acta Phys Pol 29:507–518

    CAS  Google Scholar 

  44. Chamma A, Viallet PCR (1970) Acad Sci Ser C 270:1901–1904

    CAS  Google Scholar 

  45. Kawski A (1964) Naturwissenschaften 51:82–83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is very much thankful to University Grant Commission (UGC), New Delhi, India for providing financial support and to IIT Mumbai for recording the 1H NMR, 13C NMR, and mass spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOC 97 kb)

Figure S2

(DOC 87 kb)

Figure S3

(DOC 92 kb)

Figure S4

(DOC 73 kb)

Figure S5

(DOC 88 kb)

Figure S6

(DOC 81 kb)

Figure S7

(DOC 139 kb)

Figure S8

(DOC 150 kb)

Figure S9

(DOC 143 kb)

Figure S10

(DOC 146 kb)

Figure S11

(DOC 139 kb)

Figure S12

(DOC 135 kb)

Figure S13

(DOC 152 kb)

Figure S14

(DOC 89 kb)

Table S1

(DOC 30 kb)

Table S2

(DOC 34 kb)

Table S3

(DOC 46 kb)

Table S4

(DOC 38 kb)

Table S5

(DOC 38 kb)

Table S6

(DOC 38 kb)

Table S7

(DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekar, N., Umape, P.G., Kothavale, S. et al. Synthesis of Novel Carbazole based Styryl: Rational Approach for Photophysical Properties and TD-DFT. J Fluoresc 24, 1457–1472 (2014). https://doi.org/10.1007/s10895-014-1429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1429-5

Keywords

Navigation