Skip to main content
Log in

New bis[N-(4-pyridyl)-P-Toluene Sulfonamide] Palladium Dichloride a Novel Fluorophore for Determination of Lysine Amino Acid

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Here, we are describing the study of the chemiluminescence arising from the reaction of bis (2,4,6-trichlorophenyl) oxalate (TCPO) system with new bis [N-(4-pyridyl)-p-toluene sulfonamide] palladium dichloride (BSPC) as a novel luminescent. The optimum concentrations of all reagents such as sodium salicylate (SS) as catalyst, hydrogen peroxide as oxidizing reagent and the relationships between the chemiluminescence intensity and concentrations of TCPO, SS, hydrogen peroxide and BSPC are reported. After optimization the required reagents, the system were used for determination of amino acid lysine, as an effective and selective quencher in the solution functioning in a Stern–Volmer fashion. This resulted in the development of a facile and highly sensitive chemiluminescence detection scheme for the determination of lysine in biological samples. Ultimately, estimating quenching constant K q of 4.29 × 103 M−1 was successfully carried out. Under the optimal conditions, the evaluated lower and upper detection limits of measurable concentration of lysine are 1.17 × 10−7 and 3.18 × 10−4 M, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kricka LJ (2003) Clinical applications of chemiluminescence. Anal Chim Acta 500:279–286

    Article  CAS  Google Scholar 

  2. Liu M, Lin Z, Lin JM (2010) A review on applications of chemiluminescence detection in food analysis. Anal Chim Acta 670:1–10

    Article  CAS  PubMed  Google Scholar 

  3. Gracia LG, Campaña AMG, Pérez JFH, Lara FJ (2009) Chemiluminescence detection in liquid chromatography: Applications to clinical, pharmaceutical, environmental and food analysis-A review. Anal Chim Acta 640:7–28

    Article  Google Scholar 

  4. Campaña AMG, Lara FJ, Gracia LG, Pérez JFH (2009) Chemiluminescence detection coupled to capillary electrophoresis. Trends Anal Chem 28:973–986

    Article  Google Scholar 

  5. Costin JW, Francis PS, Lewis SW (2003) Selective determination of amino acids using flow injection analysis coupled with chemiluminescence detection. Anal Chim Acta 480:67–77

    Article  CAS  Google Scholar 

  6. Yari A, Saidikhah M (2010) Chemiluminescence of curcumin and quenching effect of dimethyl sulfoxide on its peroxyoxalate system. J Lumin 130:709–713

    Article  CAS  Google Scholar 

  7. Tsunoda M, Imai K (2005) Analytical applications of peroxyoxalate chemiluminescence. Anal Chim Acta 541:13–23

    Article  CAS  Google Scholar 

  8. Dodeigne C, Thunus L, Lejeune R (2000) Chemiluminescence as diagnostic tool. A review. Talanta 51:415–439

    Article  CAS  PubMed  Google Scholar 

  9. Yan X (1999) Detection by ozone-induced chemiluminescence in chromatography, review. J Chromatogr A 842:267–308

    Article  CAS  Google Scholar 

  10. Kwakman PJM, de Jong GJ, Brinkman UAT (1992) Mechanism of the peroxyoxalate chemiluminescence reaction. Trend Anal Chem 11:232–237

    Article  CAS  Google Scholar 

  11. Schuster GB (1979) Chemiluminescence of organic peroxides. Conversion of ground-state reactants to excited-state products by the chemically initiated electron-exchange luminescence mechanism. Acc Chem Res 12:366–373

    Article  CAS  Google Scholar 

  12. Qiao M, Guo X, Li FJ (2002) Chemiluminescence detection coupled to high-performance frontal analysis for the determination of unbound concentrations of drugs in protein binding equilibrium. Chromatogr A 952:131–138

    Article  CAS  Google Scholar 

  13. Alarfaj NA, Abd ER, Sawsan A (2006) Flow-injection chemiluminescent determination of cefprozil using Tris (2,2’-bipyridyl) ruthenium (II)-permanganate system. J Pharm Biomed Analysis 41:1423–1427

    Article  CAS  Google Scholar 

  14. Levesque CL, Moehn S, Pencharz PB, Ball RO (2010) Review of advances in metabolic bioavailability of amino acids. Livestock Sci 133:4–9

    Article  Google Scholar 

  15. Le Floc’h N, Melchior D, Obled C (2004) Modifications of protein and amino acid metabolism during inflammation and immune system activation. Livestock Produc Sci 8737–45

  16. Azevedo RA, Arruda P, Turner WL, Lea PJ (1997) The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. Phytochem 46:395–419

    Article  CAS  Google Scholar 

  17. Shamsipur M, Chaichi MJ (2005) A study of quenching effect of sulfur-containing amino acids l-cysteine and l-methionine on peroxyoxalate chemiluminescence of 7-amino-4-trifluoromethylcumarin. J Spectrochim Acta A 61:1227–1231

    Article  Google Scholar 

  18. Mohan AG, Turro NJ (1974) A facile and effective chemiluminescence demonstration experiment. J Chem Educ 51:528–529

    Article  CAS  Google Scholar 

  19. Ganbari Kh, Mehdipour E (2005) Synthesis of complexes and its application as catalyst in Heck reaction, MSc. Thesis in Lorestan University

  20. Tonkin SA, Bos R, Dyson GA, Lim KF, Russell RA, Hindson SPCM, Barnett NW (2008) Studies on the mechanism of the peroxyoxalate chemiluminescence reaction Part 2. Further identification of intermediates using 2D EXSY 13C nuclear magnetic resonance spectroscopy. Anal Chim Acta 614:173–181

    Article  CAS  PubMed  Google Scholar 

  21. Orlovic M, Schowen RL, Givens RS, Alvarez F, Matuszewski B, Parekh N (1989) A simplified model for the dynamics of chemiluminescence in the oxalate-hydrogen peroxide system: Toward a reaction mechanism. J Org Chem 54:3606–3610

    Article  CAS  Google Scholar 

  22. Hadd AG, Robinson AL, Rowlen KL, Birks JW (1998) Stopped-Flow kinetics investigation of the imidazole-catalyzed peroxyoxalate chemiluminescence reaction. J Org Chem 63:3023–3031

    Article  CAS  Google Scholar 

  23. Bos R, Barnett NW, Dyson GA, Lim KF, Russel RA, Watson SP (2004) Studies on the mechanism of the peroxyoxalate chemiluminescence reaction Part 1. Confirmation of 1,2-dioxetanedione as an intermediate using 13C nuclear magnetic resonance spectroscopy. Spectrochim Acta 502:141–147

    CAS  Google Scholar 

  24. Robards K, Worsfold PJ (1992) Analytical application of liquid-phase chemiluminescence. Anal Chim Acta 266:147–173

    Article  CAS  Google Scholar 

  25. Shamsipur M, Zargoosh K, Hosseini SM, Caltagirone C, Lippolis V (2009) Quenching effect of some heavy metal ions on the fast peroxyoxalate-chemiluminescence of 1-(dansylamidopropyl)-1-aza-4,7,10-trithiacyclododecane as a novel fluorophore. Spectrochim Acta A 74:205–209

    Article  Google Scholar 

  26. Laidler KJ, King MC (1983) The development of Transition-State Theory. J Phys Chem 87:2657–2664

    Article  CAS  Google Scholar 

  27. Winzor DJ, Jackson CM (2006) Interpretation of the temperature dependence of equilibrium and rate constants. J Mol Recognit 193:89–407

    Google Scholar 

  28. Dye JL, Nicely VA (1971) A general purpose curve-fitting program for class and research use. J Chem Educ 48:443–450

    Article  CAS  Google Scholar 

  29. Bobreshova OV, Agupova MV, Parshina AV (2009) Potentiometric determination of lysine in aqueous solutions using MF-4SK modified perfluorinated membranes. J Anal Chem 64:642–647

    Article  CAS  Google Scholar 

  30. Pravin B, Madhavan P, Rao BM, Someswar NR (2010) Determination of arginine, lysine and histidine in drug substance and drug product without derivatisation by using HILIC column LC technique. J Chem Pharm Res 5:580–586

    Google Scholar 

  31. Green NJB, Pimblott SM, Tachiya M (1993) Generalizations of the Stern–Volmer relation. J Phys Chem 97:196–202

    Article  CAS  Google Scholar 

  32. Ciscato LFML, Bartoloni FH, Bastos EL, Baader WJ (2009) Direct kinetic observation of the chemiexcitation step in peroxyoxalate chemiluminescence. J Org Chem 74:8974–8979

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Yari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yari, A., Mehdipour, E. & Karami, M. New bis[N-(4-pyridyl)-P-Toluene Sulfonamide] Palladium Dichloride a Novel Fluorophore for Determination of Lysine Amino Acid. J Fluoresc 24, 1415–1422 (2014). https://doi.org/10.1007/s10895-014-1423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1423-y

Keywords

Navigation