Skip to main content
Log in

A Novel Series Colorimetric and Off–On Fluorescent Chemosensors for Fe3+ Based on Rhodamine B Derivative

  • RAPID COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel series colorimetric and off–on fluorescent chemosensors (2a, 2b, 2c) were designed and synthesized, which showed reversible and highly selective and sensitive recognition toward Fe3+ over other examined metal ions. Upon addition of Fe3+, sensors (2a, 2b) exhibit remarkably and 2c exhibits moderate enhanced absorbance intensity and color change from colorless to pink in CH3OH–H2O(1:1, v/v). The three compounds (2a, 2b, 2c) may therefore be applicable as rhodamine-based turn-on type fluorescent chemosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Prasanna de Silva A, Nimal Gunaratne HQ (1997) Thorfinnur Gunnlaugsson, Allen J. M. Huxley, Colin P. McCoy, Jude T. Rademacher, and Terence E. Rice. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  2. Valeur B, Leray I (2000) Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  3. Fan L-J, Zhang Y, Murphy CB, Angell SE, Parker MFL, Flynn BR, Jones WE Jr (2009) Coord Chem Rev 253:410–422

    Article  CAS  Google Scholar 

  4. Xiang Y, Tong A (2006) Org Lett 8:1549–1552

    Article  PubMed  CAS  Google Scholar 

  5. Tumambac GE, Rosencrance CM, Wolf C (2004) Tetrahedron 60:11293–11297

    Article  CAS  Google Scholar 

  6. Liu J-M, Zheng Q-Y, Yang J-L, Chen C-F, Huang Z-T (2002) Tetrahedron Lett 43:9209–9212

    Article  CAS  Google Scholar 

  7. Bricks JL, Kovalchuk A, Trieflinger C, Nofz M, Buschel M, Tolmachev AI, Daub J, Rurack KJ (2005) Am Chem Soc 127:13522

    Article  CAS  Google Scholar 

  8. Mitra A, Ramanujam B, Rao CP (2009) Tetrahedron Lett 50:776–780

    Article  CAS  Google Scholar 

  9. Ghosh S, Chakrabarty R, Mukherjee PS (2009) Inorg Chem 48:549–556

    Article  PubMed  CAS  Google Scholar 

  10. Aruna J (2010) Weerasinghe; Carla Schmiesing; Shankar Varaganti; Guda Ramakrishna; Ekkehard Sinn. J Phys Chem B 114:9413–9419

    Google Scholar 

  11. Lee YH, Lee MH, Zhang JF, Kim JS (2010) J Org Chem 75:7159–7165

    Article  PubMed  CAS  Google Scholar 

  12. Xu Z, Zhang L, Guo R, Xiang T, Wu C, Zheng Z, Yang F (2011) Sensor Actuator B 156:546–552

    Article  Google Scholar 

  13. Kwon JY, Jang YJ, Lee YJ, Kim KM, Seo MS, Nam W, Yoon J (2005) J Am Chem Soc 127:10107–10111

    Article  PubMed  CAS  Google Scholar 

  14. Hu ZQ, Lin CS, Wang XM, Ding L, Cui CL, Liu SF, Lu HY (2010) Chem Commun 3765–3767

  15. Hu Z-Q, Feng Y-C, Huang H-Q, Ding L, Wang X-M, Lin C-S, Li M, Ma C-P (2011) Sensor Actuators B 156:428–432

    Article  Google Scholar 

  16. Huang KW, Yang H, Guo ZG, Yu MX, Li FY, Gao X, Yi T, Duan CY (2008) Org Lett 10:2557–2560

    Article  PubMed  CAS  Google Scholar 

  17. Yin W, Cui H, Yang Z, Li C, She M, Yin B, Li J, Zhao G, Shi Z (2011) Sensor Actuator B 157:675–680

    Article  CAS  Google Scholar 

  18. Naik AD, Marchand-Brynaert J, Garci Y. SYNTHESIS (2008) No.1, 0149–0154

  19. Lees AC, Evrard B, Keyes TE, Vos JG, Kleverlaan CJ, Alebbi M, Bignozzi CA (1999) Eur J Inorg Chem 12:2309–2317

    Article  Google Scholar 

  20. Lee MH, Kim HJ, Yoon S, Park N, Kim JS (2008) Org Lett 10(2):213–216

    Article  PubMed  CAS  Google Scholar 

  21. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) Chem Soc Rev 37(8):1465–1472

    Article  PubMed  CAS  Google Scholar 

  22. Job P (1928) Ann Chim 9:113–116

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (Nos. 20972143 and 20972130) and Program for New Century Excellent Talents in University (NCET-11-0950).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Ye or Yufen Zhao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

1H NMR spectrum of 2a in CDCl3. (DOC 317 kb)

Fig. S2

13C NMR spectrum of 2a in CDCl3. (DOC 339 kb)

Fig. S3

ESI-Mass spectrum of 2a. (DOC 67 kb)

Fig. S4

1H NMR spectrum of 2b in CDCl3. (DOC 838 kb)

Fig. S5

13C NMR spectrum of 2b in CDCl3. (DOC 444 kb)

Fig. S6

ESI-Mass spectrum of 2b. (DOC 75 kb)

Fig. S7

1H NMR spectrum of 2c in CDCl3. (DOC 328 kb)

Fig. S8

13C NMR spectrum of 2c in CDCl3. (DOC 360 kb)

Fig. S9

ESI-Mass spectrum of 2c. (DOC 71 kb)

Fig. S10

UV–vis spectrum of 2a (10 μM) in CH3OH–H2O(1:1, v/v) with different metal ions (500 μM). Insert shows the photo of sensor 2a with different metal ions. (DOC 51 kb)

Fig. S11

UV–vis spectrum of 2c (10 μM) in CH3OH–H2O(1:1, v/v) with different metal ions (500 μM). Insert shows the photo of sensor 2c with different metal ions. (DOC 55 kb)

Fig. S12

ESI mass spectra (positive) of 2a in the presence of FeCl3 (5 equiv), indicating the formation of a 1:1 metal-ligand complex. (DOC 48 kb)

Fig. S13

ESI mass spectra (positive) of 2c in the presence of FeCl3 (5 equiv), indicating the formation of a 1:1 metal-ligand complex. (DOC 49 kb)

Fig. S14

Fluorescence spectra (λex = 565 nm) of 2a (10 μM) in CH3OH–H2O(1:1, v/v) with the presence of 10 equivalents of various species Inset: color change of 2a in the visible region. (DOC 819 kb)

Fig. S15

Fluorescence intensity (at 580 nm) of 2a (10 μM) upon the addition of 10 μM Fe3+ in the presence of 10 μM background metal ions in CH3OH–H2O (1:1, v/v). (λex = 565 nm). (DOC 1081 kb)

Fig. S16

Fluorescence intensity (580 nm) of free sensor 2a (10 μM) and in the presence of 10 equiv. Fe3+ in CH3OH/Tris–HCl buffer (1:1, v/v) solutions with different pH conditions. (DOC 746 kb)

Fig. S17

Fluorescence intensity of 2a (10 μM) to Fe3+ in CH3OH –H2O(1:1, v/v), (λex = 565 nm). (DOC 1074 kb)

Fig. S18

Fluorescence spectra (λex = 565 nm) of 2c (10 μM) in CH3OH– H2O(1:1, v/v) with the presence of 10 equivalents of various species Inset: color change of 2c in the visible region. (DOC 965 kb)

Fig. S19

Fluorescence intensity (at 580 nm) of 2c (10 μM) upon the addition of 10 μM Fe3+ in the presence of 10 μM background metal ions in CH3OH–H2O (1:1, v/v). (λex = 565 nm) (DOC 1123 kb)

Fig. S20

Fluorescence intensity (580 nm) of free sensor 2c (10 μM) and in the presence of 10 equiv. Fe3+ in CH3OH/Tris–HCl buffer (1:1, v/v) solutions with different pH conditions. (DOC 730 kb)

Fig. S21

Fluorescence intensity of 2c (10 μM) to Fe3+ in CH3OH –H2O(1:1, v/v), (λex = 565 nm). (DOC 1053 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Zou, R., Wang, M. et al. A Novel Series Colorimetric and Off–On Fluorescent Chemosensors for Fe3+ Based on Rhodamine B Derivative. J Fluoresc 23, 13–19 (2013). https://doi.org/10.1007/s10895-012-1118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1118-1

Keywords

Navigation