Skip to main content

Advertisement

Log in

Folate Conjugated Chitosan Grafted Thiazole Orange Derivative with High Targeting for Early Breast Cancer Cells Diagnosis

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The folate receptor (FR) is over-expressed on many solid tumors and has been exploited for targeted delivery of folic acid linked liposomes to cancer cells in vitro. In the present study, we developed a novel folic acid (FA) conjugated chitosan (CTS) grafted thiazole orange (TO) complex (FA-CTS-TO), and the formation can be used to label tumor cells. The structure of TO derivatives was confirmed by 1H NMR and MS, and the fluorescence probe of FA-CTS-TO complex was confirmed by Fourier transform infrared analysis and Differential thermal analysis. The in vitro and in vivo of FA-CTS-TO complex were tested in breast cancer cells and the results showed a high targeting specificity in tumor cells with FR over-expressed. Such prominent fluorescence properties demonstrate again that FA-CTS-TO complex as a tumor targeting fluorescence probe is appropriate for breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morris V, Sharma C (2011) Folate mediated L-arginine modified oligo (alkylaminosiloxane) graft poly (ethyleneimine) for tumor targeted gene delivery. Biomaterials 32:3030–3041

    Article  PubMed  CAS  Google Scholar 

  2. Way TD, Chang CJ, Lin CW (2011) Bioconjugated fluorescent polymeric nanoparticles for imaging and targeted therapy of HER2-overexpressing cancer cells. J Fluoresc 21:1669–1676

    Article  PubMed  CAS  Google Scholar 

  3. Sahu SK, Maiti S, Maiti TK, Ghosh SK, Pramanik P (2011) Folate-decorated succinylchitosan nanoparticles conjugated with doxorubicin for targeted drug delivery. Macromol Biosci 11:285–295

    Article  PubMed  CAS  Google Scholar 

  4. Wang J, Liu W, Tu Q, Wang J, Song N, Zhang Y, Nie N, Wang J (2010) Folate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery. Biomacromolecules 12:228–234

    Article  PubMed  Google Scholar 

  5. Trivedi ER, Vesper BJ, Weitman H, Ehrenberg B, Barrett AGM, Radosevich JA, Hoffman BM (2010) Chiral bis-acetal porphyrazines as near-infrared optical agents for detection and treatment of cancer. Photochem Photobiol 86:410–417

    Article  PubMed  CAS  Google Scholar 

  6. Kim IB, Shin H, Garcia AJ, Bunz UHF (2007) Use of a folate–PPE conjugate to image cancer cells in vitro. Bioconjugate Chem 18:815–820

    Article  CAS  Google Scholar 

  7. Reddy J, Westrick E, Vlahov I, Howard S, Santhapuram H, Leamon C (2006) Folate receptor specific anti-tumor activity of folate–mitomycin conjugates. Cancer Chemother Pharmacol 58:229–236

    Article  PubMed  CAS  Google Scholar 

  8. Lin Y, Weissleder R, Tung CH (2002) Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjugate Chem 13:605–610

    Article  Google Scholar 

  9. Skeidsvoll J, Magne Ueland P (1995) Analysis of double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection using the monomeric dye SYBR Green I. Anal Biochem 231:359–365

    Article  PubMed  CAS  Google Scholar 

  10. Crott JW, Mashiyama ST, Ames BN, Fenech MF (2001) Methylenetetrahydrofolate reductase C677T polymorphism does not alter folic acid deficiency-induced uracil incorporation into primary human lymphocyte DNA in vitro. Carcinogenesis 22:1019–1025

    Article  PubMed  CAS  Google Scholar 

  11. Fei XN, Gu YC, Ban Y, Liu Z, Zhang BL (2009) Thiazole Orange derivatives: synthesis, fluorescence properties, and labeling cancer cells. Bioorgan Med Chem 17:585–591

    Article  CAS  Google Scholar 

  12. Rodrigues M, Lima A, Codognoto L, Villaverde A, Tavares Pacheco M, Moisés de Oliveira H (2008) Detection of polymolecular associations in hydrophobized chitosan derivatives using fluorescent probes. J Fluoresc 18:973–977

    Article  PubMed  CAS  Google Scholar 

  13. Gerrit B (2001) Chitosans for gene delivery. Adv Drug Deliver Rev 52:145–150

    Article  Google Scholar 

  14. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    Article  PubMed  CAS  Google Scholar 

  15. Chen W, Korbelik M, Barteis K, Liu H, Sun J, Nordquist R (2005) Enhancement of laser cancer treatment by a chitosan-derived immunoadjuvant. Photochem Photobiol 81:190–195

    Article  PubMed  CAS  Google Scholar 

  16. Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, Kim Y, Park JH, Kim J, Her S, Oh YK, Kwon IC, Kim K, Jeong SY (2009) Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release 135:259–267

    Article  PubMed  CAS  Google Scholar 

  17. He Z, Zhu H, Zhou P (2012) Microwave-assisted aqueous synthesis of highly luminescent carboxymethyl chitosan-coated CdTe/CdS quantum dots as fluorescent probe for live cell imaging. J Fluoresc 22:193–199

    Article  PubMed  CAS  Google Scholar 

  18. Hyung Park J, Kwon S, Lee M, Chung H, Kim JH, Kim YS, Park RW, Kim IS, Bong Seo S, Kwon IC, Young Jeong S (2006) Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: In vivo biodistribution and anti-tumor activity. Biomaterials 27:119–126

    Article  PubMed  Google Scholar 

  19. Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M (1997) Overexpression of folate binding protein in ovarian cancers. Int J Cancer 74:193–198

    Article  PubMed  CAS  Google Scholar 

  20. Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines Physiologic and clinical implications. Cancer 73:2432–2443

    Article  PubMed  CAS  Google Scholar 

  21. Lu Y, Sega E, Low PS (2005) Folate receptor-targeted immunotherapy: induction of humoral and cellular immunity against hapten-decorated cancer cells. Int J Cancer 116:710–719

    Article  PubMed  CAS  Google Scholar 

  22. Kim SH, Jeong JH, Chun KW, Park TG (2005) Target-specific cellular uptake of PLGA nanoparticles coated with poly(l-lysine)–poly(ethylene glycol)–folate conjugate. Langmuir 21:8852–8857

    Article  PubMed  CAS  Google Scholar 

  23. Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127:11364–11371

    Article  PubMed  CAS  Google Scholar 

  24. Ke CY, Mathias CJ, Green MA (2005) Targeting the tumor-associated folate receptor with an 111In–DTPA conjugate of pteroic acid. J Am Chem Soc 127:7421–7426

    Article  PubMed  CAS  Google Scholar 

  25. Setua S, Menon D, Asok A, Nair S, Koyakutty M (2010) Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials 31:714–729

    Article  PubMed  CAS  Google Scholar 

  26. Chen H, Li L, Cui S, Mahounga D, Zhang J, Gu Y (2011) Folate conjugated CdHgTe quantum dots with high targeting affinity and sensitivity for in vivo early tumor diagnosis. J Fluoresc 21:793–801

    Article  PubMed  CAS  Google Scholar 

  27. Carreon JR, Stewart KM, Mahon KP Jr, Shin S, Kelley SO (2007) Cyanine dye conjugates as probes for live cell imaging. Bioorg Med Chem Lett 17:5182–5185

    Article  PubMed  CAS  Google Scholar 

  28. Zhang L, Mizumoto K, Sato N, Ogawa T, Kusumoto M, Niiyama H, Tanaka M (1999) Quantitative determination of apoptotic death in cultured human pancreatic cancer cells by propidium iodide and digitonin. Cancer Lett 142:129–137

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Foundation of China (21072147, 51178289) and the National Science Foundation of Tianjin (NO.09JCYBJC04100, 10JCYBJC10500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Ning Fei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, XN., Liu, Y. & Li, C. Folate Conjugated Chitosan Grafted Thiazole Orange Derivative with High Targeting for Early Breast Cancer Cells Diagnosis. J Fluoresc 22, 1555–1561 (2012). https://doi.org/10.1007/s10895-012-1094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1094-5

Keywords

Navigation