Skip to main content
Log in

On the Photophysics of 3,5,6-Trichlorosalicylic Acid: Spectroscopic Study Combined with Hartree-Fock and Density Functional Theory Calculations

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The present contribution reports a detailed photophysical study of a simple salicylic acid derivative viz., 3,5,6-Trichlorosalicylic acid (TCSA) based on steady state absorption, emission and time-resolved emission spectroscopy. Anomalous “dual” emission coupled with a large Stokes shift and negligible solvent polarity dependence marks the spectroscopic signature for Excited State Intramolecular Proton Transfer (ESIPT) reaction. Variation of medium polarity and pH of the medium have been implemented as fruitful tools to decipher the photophysics of TCSA. Quantum chemical calculation by ab initio Hartree-Fock and Density Functional Theory methods yields consistent results to follow experimental findings with distinct illustration of the inoperativeness of GSIPT reaction as well as occurrence of ESIPT process. A rigorous comparison of our experimental and theoretical measurements of TCSA with the parent compound salicylic acid, 5-chlorosalicylic acid and 3,5-dichlorosalicylic acid reveals the impact of chlorine substitution on the photophysics of the studied molecular systems with simultaneous exploration of the complexities induced in TCSA with respect to salicylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Weller AH (1961) Fast reactions of excited molecules. Prog React Kinet 1:187

    CAS  Google Scholar 

  2. Chou PT, Martinez ML, Clements JH (1993) The observation of solvent-dependent proton-transfer/charge-transfer lasers form 4′-diethylamino-3-hydroxyflavone. Chem Phys Lett 204:395

    Article  CAS  Google Scholar 

  3. (a) Chou PT, MxMorrow D, Aartsna TJ, Kasha M (1984) The proton-transfer laser. Gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone. J Phys Chem 88:4596. (b) Park S, Kown OH, Kim S, Park S, Choi MG, Cha M, Park SY, Jang DJ (2005) Imidazole-based excited state intramolecular proton-transfer materials: Synthesis and amplified spontaneous emission from a large single crystal. J Am Chem Soc 127:10070.

    Google Scholar 

  4. Kim S, Park SY (2003) Photochemically gated protonation effected by intramolecular hydrogen bonding: towards stable fluorescence imaging in polymer films. Adv Matter 15:1341

    Article  CAS  Google Scholar 

  5. Kim S, Seo J, Jung HK, Kim JJ, Park SY (2005) White luminescence from polymer thin films containing excited-state intramolecular proton-transfer dyes. Adv Matter 17:2077

    Article  CAS  Google Scholar 

  6. Heller HJ, Blattmann HR (1972) Some aspects of the light protecting polymer. Pure Appl Chem 30:145

    Article  CAS  Google Scholar 

  7. (a) Maity SS, Samanta S, Sardar PS, Pal A, Dasgupta S, Ghosh S (2008) Chem. Phys. (2008) Fluorescence, anisotropy and docking studies of proteins through excited state intramolecular proton transfer probe molecules. 354:162 (b) Sardar PS, Samanta S, Maity SS, Dasgupta S, Ghosh S (2008) Energy transfer photophysics from serum albumins to sequestered 3-hydroxy-2-naphthoic acid, an excited state intramolecular proton transfer probe. J Phys Chem B 112:3451. (c) Singh RB, Mahanta S, Guchhait N (2008) Study of interaction of proton transfer probe 1-hydroxy-2-naphthaldehyde with serum albumins: A spectroscopic study. J Photochem Photobiol B 91:1. (d) Singh RB, Mahanta S, Guchhait N (2008) Destructive and protective action of sodium dodecyl sulphate micelles on the native conformation of bovine serum albumin: A study by extrinsic fluorescence probe 1-hydroxy-2-naphthaldehyde. Chem Phys Lett 463:183. (e) Chakraborty B, Basu S (2009) Interaction of BSA with proflavin: A spectroscopic approach. J Lumin 129:34. (f) Zhong D, Douhal A, Zewail AH (2000) Femtosecond studies of protein-ligand hydrophobic binding and dynamics: Human serum albumin. Proc Natl Acad Sci, USA 97:14056 (g) Klymchenko AS, Shvadchak VV, Yushchenko DA, Jain N, Mely Y (2008) Excited state Intramolecular proton transfer distinguishes microenvironments in single- and double-stranded DNA. J Phys Chem B 112:12050

    Google Scholar 

  8. (a) Irie M (1994) Photoreactive material for ultra-high density optical memory. Elsevier, Amsterdam. (b) Lim SJ, Seo J, Park SY (2006) Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout. J Am Chem Soc 128:14542

    Google Scholar 

  9. Maheshwari S, Chowdhury A, Sathyamurthy N, Mishra H, Tripathi PM, Chandrasekhar J (1999) Ground and excited state intramolecular proton transfer in salicylic acid: an ab initio electronic structure investigation. J Phys Chem A 103:6257

    Article  CAS  Google Scholar 

  10. Mitsuzuka A, Fujii A, Ebata T, Mikami N (1998) Infrared spectroscopy of intramolecular hydrogen-bonded OH stretching vibrations in Jet-cooled methyl salicylate and its clusters. J Phys Chem A 102:9779

    Article  CAS  Google Scholar 

  11. Acuna AU, Amat-Guerri F, Catalan J, Gonzalez-Tablas F (1980) Dual fluorescence and ground state equilibria in methyl salicylate, methyl 3-chlorosalicylate, and methyl 3-tert-butylsalicylate. J Phys Chem 84:629

    Article  CAS  Google Scholar 

  12. (a) Mishra H, Maheshwary S, Tripathi HB, Sathyamurthy N (2005) An experimental and theoretical investigation of the photophysics of 1-hydroxy-2-naphthoic acid. J Phys Chem A 109:2746. (b) Sobolewski Al, Domcke W, Hattig C (2006) Photophysics of organic photostabilizers. Ab Initio study of the excited-state deactivation mechanisms of 2-(2’-Hydroxyphenyl)benzotriazole. J Phys Chem A 110:6301

    Google Scholar 

  13. Gora RW, Grabowski SJ, Leszczynski J (2005) Dimers of formic acid, acetic acid, formamide and pyrrole-2-carboxylic acid: an ab initio study. J Phys Chem A 109:6397

    Article  PubMed  CAS  Google Scholar 

  14. El-Nasr EAEA, Fujii A, Yahagi T, Ebata T, Mikami N (2005) Laser spectroscopic investigation of salicylic acids hydrogen bonded with water in supersonic jets: microsolvation effects for excited state proton dislocation. J Phys Chem A 109:2498

    Article  PubMed  Google Scholar 

  15. de Vivie-Riedle R, Waele VD, Kurtz L, Riedle E (2003) Ultrafast excited-sate proton transfer of 2-(2′-Hydroxyphenyl)benzothiazole: theoretical analysis of the skeletal deformations and the active vibrational modes. J Phys Chem A 107:10591

    Article  Google Scholar 

  16. Organero JA, Moreno M, Santos L, Lluch JM, Douhal A (2000) Photoinduced proton transfer and rotational motion of 1-hydroxy-2-acetonaphthone in the S1 state: a theoretical insights into its photophysics. J Phys Chem A 104:8424

    Article  CAS  Google Scholar 

  17. Helmbrook LA, Kenny JE, Kohler BE, Scott GW (1983) Lowest excited singlet state of hydrogen-bonded methyl salicylate. J Phys Chem 87:280

    Article  Google Scholar 

  18. Catalan J, de Paz JLG (2007) On the inoperativeness of the ESIPT process in the emission of 1-hydroxy-2-acetonaphthone: a reappraisal. J Phys Chem A 112:904

    Article  Google Scholar 

  19. Lahmani F, Zehnacker-Rentien A (1997) Effect of substitution on photoinduced intramolecular proton transfer in salicylic acid. J Phys Chem A 101:6141

    Article  CAS  Google Scholar 

  20. Rodriguez-Santiago L, Sodupe M, Oliva A, Berntran J (1999) Hydrogen atom or proton transfer in neutral and single positive ions of salicylic acid and related compounds. J Am Chem Soc 121:8882

    Article  CAS  Google Scholar 

  21. Friedrich DM, Wang Z, Joly AG, Peterson KA, Callis PR (1999) Ground-state proton-transfer tautomer of the salicylate anion. J Phys Chem A 103:9644

    Article  CAS  Google Scholar 

  22. (a) Pozdnyakov IP, Pigliucci A, Tkachenko N, Plyusnin VF, Vauthey E, Lemmetyinen H (2009) The photophysics of salicylic acid derivatives in aqueous solution. J Phys Org Chem 22:449. (b) Joshi HC, Gooijer C, van der Zwan G (2003) Substituion effects on the photophysical characteristics of the salicylic anion. J Fluoresc 13:227. (c) Kozma L, Hornak I, Eroshtak I, Nemet B (1990) Study of the fluorescent properties of salicylic acid derivatives in solutions. Z Prikladnoi Spektr 53:259

    Google Scholar 

  23. Paul BK, Samanta A, Guchhait N (2010) Deciphering the photophysica of 5-chlorosalicylic acid: evidence for excited state intramolecular proton transfer. Photochem Photobiol Sci 9:57

    Article  PubMed  CAS  Google Scholar 

  24. Paul BK, Samanta A, Guchhait N (2010) Influence of chlorine substitution on intramolecular hydrogen bond energy and ESIPT barrier: experimental and theoretical measurements on the photophysics of 3,5-dichlorosalicylic acid. J Mol Struct 977:78

    Google Scholar 

  25. Bisht P, Petek H, Yoshihara K, Nagashima U (1995) Excited state enol-keto tautomerization in salicylic acid: a supersonic free jet study. J Chem Phys 103:5290

    Article  CAS  Google Scholar 

  26. (a) Muller A, O’Brien DF (2002) Supramolecular materals via polymerization of mesophases of hydrated amphiphiles. Chem Rev 102:727. (b) Janquera E, Aicart E (1999) Thermodynamic analysis of the binding of a hepatoprotectant drug, thioctic acid, by β-cyclodextrin. J Pharm Sci 88:626. (c) Park C, Youn H, Kim H, Noh T, Kook YH, Oh ET, Park HJ, Kim C (2009) Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J Mater Chem 19:2310

    Google Scholar 

  27. (a) Mitra S, Das R, Mukherjee S (1998) Intramolecular proton transfer in inclusion complexes of cyclodextrins: role of water and highly polar nonaqueous meida. J Phys Chem B 102:3730 and references therein. (b) Sortino S, Giuffrida S, Fazio S, Monti S (2001) Spectroscopic characterization and photochemical behaviour of host-guest complexes between β-cyclodextrin and drugs containing biphenyl-like chromophore. New J Chem 25:707

    Google Scholar 

  28. (a) Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods, 2nd ed. Gaussian, Inc., Pittsburgh, PA. (b) Frisch MJ et al (2003) Gaussian 03. Gaussian, Inc., Pittsburgh, PA

  29. Palomar J, De Paz JLG, Catalan J (2000) Theoretical analysis of molecular structure, hydrogen bond strength, and proton transfer energy in O-H...O aromatic compounds. J Phys Chem A 104:6453

    Google Scholar 

  30. Tsai HHG, Sun HLS, Tan CJ (2010) TD-DFT study of the excited- state potential energy surface of 2-(2-hydroxyphenyl)benzimidazole and its amino derivatives. J Phys Chem A 114:4065

    Google Scholar 

  31. Shchavlev AE, Pankratov AN, Enchev V (2007) Intramolecular hydrogen-bonding interaction in 2-nitrosophenol and nitronaphthols: Ab Initio, density functional, and nuclear magnetic resonance theoretical study. J Phys Chem A 111:7112

    Google Scholar 

  32. (a) Singh RB, Mahanta S, Kar S, Guchhait N (2007) Photo-physical properties of 1-hydroxy-2-naphthaldehyde: A combined fluorescence spectroscopy and quantum chemical calculations. Chem Phys 331:373. (b) Singh RB, Mahanta S, Kar S, Guchhait N (2008) Solvent dependent excited state spectral properties of 4-hydroxyacridine: evidence for only water mediated excited state proton transfer process. J Photochem Photobiol A 200:325

    Google Scholar 

  33. Lukeman M, Veale D, Wan P, Ranjit V, Munasinghe N, Corrie JET (2004) Photogeneration of 1, 5-naphthoquinone methides via excited-state (formal) intramolecular proton transfer (ESIPT) and photodehydration of 1-naphthol derivatives in aqueous solution. Can J Chem 82:240

    Article  CAS  Google Scholar 

  34. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, USA

  35. Catalan J, Mena E, Meutermans W, Elguero J (1992) Solvatochromism of a typical merocyanine: stilbazolium betaine and its 2,6-di-tert-butyl derivative. J Phys Chem 96:3645 and references therein

    Article  PubMed  CAS  Google Scholar 

  36. Sobolewski AL, Domcke W, Hattig C (2004) Intramolecular hydrogen bonding in the S1 (π π*) excited state of anthranilic acid and salicylic acid: TDDFT calculation of excited state geometries and infreared spectra. J Phys Chem A 108:10917

    Article  CAS  Google Scholar 

  37. Mahanta S, Singh RB, Kar S, Guchhait N (2007) Excited state intramolecular proton transfer in 3-hydroxy-2-naphthaldehyde: a combined study by absorption and emission spectroscopy and quantum chemical calculation. Chem Phys 324:742

    Article  Google Scholar 

  38. Nagaoka S, Nagashima U (1996) Effects of node of wave function upon excited-state intramolecular proton transfer of hydroxyanthraquinones and aminoanthraquinones. Chem Phys 206:353

    Article  PubMed  CAS  Google Scholar 

  39. Nagaoka S, Kusunoki J, Fujibuchi T, Hatakenaka S, Mukai K, Nagashima U (1999) Nodal-plane model of excited-state intramolecular proton transfer of 2-(o-hydroxyaryl)benzazoles. J Photochem Photobiol A 122:151

    Google Scholar 

  40. Nagaoka S, Nakamura A, Nagashima U (2002) Nodal-plane model for excited-state intramolecular proton transfer of o-hydroxybenzaldehyde: substituent effect. J Photochem Photobiol A 154:23

    Google Scholar 

  41. Mahanta S, Paul BK, Singh RB, Guchhait N (2010) Inequivalence of substitution pairs in hydroxynaphthaldehyde: a theoretical measurement by intramolecular hydrogen bond strength, aromaticity and excited-state intramolecular proton transfer reaction. J Comput Chem (in press)

  42. Maliakal A, Lem G, Turro NJ, Ravichandran R, Suhadolnik JC, DeBellis AD, Wood MG, Lau J (2002) Twisted intramolecular charge transfer states in 2-arylbenzotriazoles: fluorescence deactivation via intramolecular electron transfer rather than proton transfer. J Phys Chem A 106:7680

    Article  PubMed  CAS  Google Scholar 

  43. Fluegge AP, Waiblinger F, Stein M, Keck J, Kramer HEA, Fischer P, Wood MG, DeBellis A, Ravichandran R, Leppard D (2007) Probing the intramolecular hydrogen bond of 2-(2-hydroxyphenyl)benzotriazoles in polar environment: a photophysical study of UV absorber efficiency. J Phys Chem A 111:9733

    Article  PubMed  Google Scholar 

  44. Martinez ML, Cooper WC, Chou PT (1992) A novel excited-state intramolecular proton transfer molecule, 10-hydroxybenzo[h]quinoline. Chem Phys Lett 193:151

    Google Scholar 

  45. Paul BK, Mahanta S, Singh RB, Guchhait N (2010) A DFT-based theoretical study on the photophysics of 4-hydroxyacridine: single-water-mediated excited state proton transfer. J Phys Chem A 114:2618

    Article  PubMed  CAS  Google Scholar 

  46. Paul BK, Guchhait N (2011) Constrained photophysics of an ESIPT probe within β-cyclodextrin nanocavity and chaotrope-induced perturbation of the binding phenomenon: implication towards hydrophobic interaction mechanism between urea and the molecular probe. J Colloid Interface Sci 353:237

    Article  CAS  Google Scholar 

  47. Paul BK, Guchhait N (2010) Modulated photophysics of an ESIPT probe 1-hydroxy-2-naphthaldehyde within motionally restricted environments of liposome membranes having varying surface charges. J Phys Chem B 114:12528

    Article  CAS  Google Scholar 

  48. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum, New York

    Google Scholar 

  49. Zadorozhny BA, Ischenzo IK (1965) Hydrogen bond energies and shifts of the stretching vibration bands of C = O groups. Opt Spectrosc (Engl Transl) 19:306

    Google Scholar 

  50. Tobita S, Yamamoto M, Kurahayashi N, Tsukagoshi R, Nakamura Y, Shizuka H (1998) Effects of electronic structures on the excited-state intramolecular proton transfer of 1-hydroxy-2-acetonaphthone and related compounds. J Phys Chem A 102:5206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

BKP and AS gratefully acknowledge Council of Scientific and Industrial Research, New Delhi, India for research fellowships. NG acknowledges CSIR (Project no. 01(2161)07/EMR-II) and DST (Project no. SR/S1/PC/26/2008), Government of India, for financial supports. BKP greatly appreciates the cooperation received from Professor Soumen Basak, Chemical Sciences Division, Saha Institute of Nuclear Physics, Calcutta, India regarding the fluorescence lifetime measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Guchhait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, B.K., Samanta, A. & Guchhait, N. On the Photophysics of 3,5,6-Trichlorosalicylic Acid: Spectroscopic Study Combined with Hartree-Fock and Density Functional Theory Calculations. J Fluoresc 21, 1265–1279 (2011). https://doi.org/10.1007/s10895-010-0809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0809-8

Keywords

Navigation