Skip to main content
Log in

The Limitations of Nonlinear Fluorescence Effect in Super Resolution Saturated Structured Illumination Microscopy System

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Classically, optical systems are considered to have a fundamental resolution limit due to diffraction. Many strategies for improving both axial and lateral resolutions are based on a priori information about the input signal. These strategies lead to a numerical aperture improvement. However these are still limited by the wave nature of light. By using fluorescence technique one theoretically can reach unlimited resolution. The key point is to use the nonlinear dependence of the fluorescence emission rate on the intensity of the applied illumination. In this paper we present simulation as well as experimental results which show the advantage and the problems of using the nonlinear fluorescence effect in super resolution systems as well as discussing the nonlinear phenomena concerning the fluorescence process. The results show that the nonlinear fluorescence effect is accompanied by severe quenching, bleaching and saturation phenomena. As consequence, super resolution using saturated structured illumination method in living biological samples becomes severely restricted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbe E (1873) Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch Mikrosk Anat 9:413–468

    Article  Google Scholar 

  2. Toraldo Di Francia G (1955) Resolving power and information. J Opt Soc Am 45:497–501

    Article  Google Scholar 

  3. Toraldo Di Francia G (1969) Degrees of freedom of an image. J Opt Soc Am 59:799–804

    Article  PubMed  CAS  Google Scholar 

  4. Lukosz W (1967) Optical systems with resolving powers exceeding the classical limits. J Opt Soc Am 56:1463–1472

    Article  Google Scholar 

  5. Lukosz W (1967) Optical systems with resolving powers exceeding the classical limits II. J Opt Soc Am 57:932–940

    Article  Google Scholar 

  6. Cox IJ, Sheppard JR (1986) Information capacity and resolution in an optical system. J Opt Soc Am A 3:1152–1158

    Article  Google Scholar 

  7. Zalevsky Z, Mendlovic D (2002) Optical super resolution. Springer.

  8. Shemer A et al (1999) Superresolving optical system with time multiplexing and computer decoding. Appl Opt 38:7245–7251

    Article  PubMed  CAS  Google Scholar 

  9. Semwogerere D, Weeks ER (2005) Confocal microscopy, encyclopedia of biomaterials and biomedical engineering. Taylor & Francis

  10. Hell SW, Kroug M (1995) Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B 60:495–497

    Article  Google Scholar 

  11. Schönle A, Hänninen PE, Hell SW (1999) Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy. Ann Phys (Leipzig) 8:115–133

    Article  Google Scholar 

  12. Schönle A, Hell SW (1999) Far-field fluorescence microscopy with repetitive excitation. Eur Phys J D 6:283–290

    Article  Google Scholar 

  13. Heintzmann R, Cremer C (1999) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc SPIE 3568:185–195

    Article  Google Scholar 

  14. Frohn JT, Knapp HF, Stemmer A (2000) True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proc Natl Acad Sci U S A 97:7232–7236

    Article  PubMed  CAS  Google Scholar 

  15. Frohn JT, Knapp HF, Stemmer A (2001) Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation. Opt Lett 26:828–830

    Article  PubMed  CAS  Google Scholar 

  16. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  PubMed  CAS  Google Scholar 

  17. Gustafsson MGL et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    Article  PubMed  CAS  Google Scholar 

  18. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102:13081–13086

    Article  PubMed  CAS  Google Scholar 

  19. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  PubMed  CAS  Google Scholar 

  20. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 3:793–795

    Article  CAS  Google Scholar 

  21. Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy - a concept for optical resolution improvement. J Opt Soc Am A 19:1599–1609

    Article  Google Scholar 

  22. Heintzmann R (2003) Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron 34:283–291

    Article  PubMed  Google Scholar 

  23. Garcia J, Zalevsky Z, Fixler D (2005) Synthetic aperture super resolution by speckle pattern projection. Opt Exp 13:6073–6078

    Article  Google Scholar 

  24. Lindmo T, Steen HB (1977) Flow cytometric measurement of the polarization of fluorescence from intracellular fluorescein in mammalian cells. Biophys J 18:173–187

    Article  PubMed  CAS  Google Scholar 

  25. Rotman B, Papermaster BW (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci 55:134–141

    Article  PubMed  CAS  Google Scholar 

  26. Bloom JA, Webb WW (1984) Photodamage to intact erythrocyte membranes at high laser intensities: methods of assay and suppression. J Histochem Cytochem 32(6):608–616

    Article  PubMed  CAS  Google Scholar 

  27. Lubart R et al (1993) Light effect on fibroblast proliferation. Laser Therapy 5:55–57

    Google Scholar 

  28. Sheetz MP, Koppel DE (1979) Membrane damage caused by irradiation of fluorescent concanavalin A. Proc Natl Acad Sci USA 76:3314–3317

    Article  PubMed  CAS  Google Scholar 

  29. Shapiro HM (1983) Apparatus and method for killing unwanted cells, United States Patent 4395397

  30. Deutsch M et al (2002) Fluorescence polarization as a functional parameter in monitoring living cells: theory and practice. J Fluoresc 12(1):25–44

    Article  CAS  Google Scholar 

  31. Keene JP, Hodgson BW (1980) A fluorescence polarization flow cytometer. Cytometry 1(2):118–126

    Article  PubMed  CAS  Google Scholar 

  32. Pinkel D et al (1978) Fluorescence polarimeter for flow cytometry. Rev Sci Instrum 49(7):905–912

    Article  PubMed  CAS  Google Scholar 

  33. Lang T, Rizzoli SO (2010) Membrane protein clusters at nanoscale resolution: more than pretty pictures. Physiology 25:116–124

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Fixler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gur, A., Zalevsky, Z., Micó, V. et al. The Limitations of Nonlinear Fluorescence Effect in Super Resolution Saturated Structured Illumination Microscopy System. J Fluoresc 21, 1075–1082 (2011). https://doi.org/10.1007/s10895-010-0780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0780-4

Keyword

Navigation