Skip to main content
Log in

Microwave-Triggered Chemiluminescence with Planar Geometrical Aluminum Substrates: Theory, Simulation and Experiment

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Previously we combined common practices in protein detection with chemiluminescence, microwave technology, and metal-enhanced chemiluminescence to demonstrate that we can use low power microwaves to substantially increase enzymatic chemiluminescent reaction rates on particulate silvered substrates. We now describe the applicability of continuous aluminum metal substrates to potentially further enhance or “trigger” enzymatic chemiluminescence reactions. Furthermore, our results suggest that the extent of chemiluminescence enhancement for surface and solution based enzyme reactions critically depends on the surface geometry of the aluminum film.

In addition, we also use FDTD simulations to model the interactions of the incident microwave radiation with the aluminum geometries used. We demonstrate that the extent of microwave field enhancement for solution and surface based chemiluminescent reactions can be ascribed to “lightning rod” effects that give rise to different electric field distributions for microwaves incident on planar aluminum geometries. With these results, we believe that we can spatially and temporally control the extent of triggered chemiluminescence with low power microwave (Mw) pulses and maximize localized microwave triggered metal-enhanced chemiluminescence (MT-MEC) with optimized planar aluminum geometries. Thus we can potentially further improve the sensitivity of immunoassays with significantly enhanced signal-to-noise ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. With regard to the surface assays, the incubation chamber for the 2.5 × 2.5 mm2 aluminum square sample has a small area of exposed glass. Consequently, we suspected that it is possible that protein adsorption to glass and Al coated with SiOx are not equivalent. The results in Fig. 3 would suggest that protein binds more readily to the glass than the aluminum, which would explain the dramatic surface enhancement for the smaller area aluminum substrates. If this was the case, the surface reaction results in Fig. 2 would display a similar trend, whereby the glass substrate would show greater enhancements than aluminum. Since this is not our observation, we believe that this effect is not an artifact of nonequivalent surface loading of the two substrates.

Abbreviations

BSA:

Bovine Serum Albumin

FDTD:

Finite-Difference Time Domain

HRP:

Horseradish peroxidase

MAMEF:

Microwave-Accelerated Metal-Enhanced Fluorescence

MEF:

Metal-Enhanced Fluorescence

MT-MEC:

Microwave-Triggered Metal-Enhanced Chemiluminescence

Mw:

Low-Power Microwave heating

References

  1. Previte MJR, Aslan K, Malyn S, Geddes CD (2006) Microwave-triggered metal-enhanced chemiluminescence (MT-MEC): Application to ultra-fast and ultra-sensitive clinical assays. J Fluorescence 16(5):641–647

    Article  CAS  Google Scholar 

  2. Previte MJR, Aslan K, Malyn S, Geddes CD (2006) Microwave triggered metal-enhanced chemiluminescence: Quantitative protein determination. Anal Chem

  3. Kricka LJ (ed) (2000) Bioluminescence and chemiluminescence, Pt C. pp 333–345

  4. Burnette WN (1981) “Western blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A Anal Biochem 112(2):195–203

    Article  CAS  PubMed  Google Scholar 

  5. Whitehead TP, Thorpe GHG, Carter TJN, Groucutt C, Kricka LJ (1983) Enhanced luminescence procedure for sensitive determination of peroxidase-labeled conjugates in immunoassay. Nature 306(5930):158–159.

    Article  Google Scholar 

  6. Dubois R (1885) Note sur la physiologie des pyrophores. C R Soc Biol 2:559

    Google Scholar 

  7. Harvey EN (1957) A history of luminescence from the earlies times until 1900. The American Philosophical Society, Philiadelphia, PA

    Google Scholar 

  8. Kricka LJ (1994) In: Campbell AK, Kricka LJ, Stanley PE (eds) Bioluminescence and chemiluminescence: Fundamental and applied aspects. Wiley, Chichester

  9. Ozinkas A (1994) In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. Plenum Press, New York

  10. Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems Biosens. Bioelectron 20(12):2488–2503

    Article  CAS  Google Scholar 

  11. Chowdhury MH, Aslan K, Malyn SN, Lakowicz JR, Geddes CD (2006) Metal-enhanced chemiluminescence. J Fluorescence 16(3):295–299

    Article  CAS  Google Scholar 

  12. Aslan K, Malyn SN, Geddes CD (2006). Multicolor microwave-triggered metal-enhanced chemiluminescence. J Am Chem Soc 128(41):13372–13373

    Article  CAS  PubMed  Google Scholar 

  13. Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: Platform technology for ultrafast and ultrabright assays. Anal Chem 77(24):8057–8067

    Article  CAS  PubMed  Google Scholar 

  14. Whittaker AG, Mingos DMP (1995) Microwave-assisted solid-state reactions involving metal powders. J Chem Soc Dalton Trans 12:2073–2079

    Article  Google Scholar 

  15. Sridar V (1998) Microwave radiation as a catalyst for chemical reactions. Curr Sci 74(5):446–450

    CAS  Google Scholar 

  16. Sridar V (1997) Rate acceleration of Fischer-indole cyclization by microwave irradiation. Indian J Chem Sect B-Org Chem Incl Med Chem 36(1):86–87

    Google Scholar 

  17. Varma RS (2002) Advances in green chemistry: Chemical synthesis using microwave irradiation. Astrazeneca Research Foundation, Banglore, India

    Google Scholar 

  18. Caddick S (1995) Microwave assisted organic reactions. Tetrahedron 51:10403–10432

    Article  CAS  Google Scholar 

  19. Lin JC, Yuan PMK, Jung DT (1998) Enhancement of anticancer drug delivery to the brain by microwave induced hyperthermia. Bioelectrochem Bioenerg 47(2):259–264

    Article  CAS  Google Scholar 

  20. Akins RE, Tuan RS (1995) Ultrafast protein determinations using microwave enhancement. Mol Biotechnol 4(1):17–24

    CAS  PubMed  Google Scholar 

  21. Croppo GP, Visvesvara GS, Leitch GJ, Wallace S, Schwartz DA (1998) Identification of the microsporidian Encephalitozoon hellem using immunoglobulin G monoclonal antibodies. Arch Pathol Lab Med 122(2):182–186

    CAS  PubMed  Google Scholar 

  22. Philippova TM, Novoselov VI, Alekseev SI (1994) Influence of microwaves on different types of receptors and the role of peroxidation of lipids on receptor-protein shedding. Bioelectromagnetics 15(3):183–192

    Article  CAS  PubMed  Google Scholar 

  23. VanTriest B, Loftus BM, Pinedo HM, Backus HHJ, Schoenmakers P, Telleman F, Tadema T, Aherne GW, Van Groeningen CJ, Zoetmulder FAN, Taal BG, Johnston PG, Peters GJ (2000) Thymidylate synthase expression in patients with colorectal carcinoma using a polyclonal thymidylate synthase antibody in comparison to the TS 106 monoclonal antibody. J Histochem Cytochem 48(6):755–760

    CAS  Google Scholar 

  24. Rhodes A, Jasani B, Balaton AJ, Barnes DM, Anderson E, Bobrow LG, Miller KD (2001) Study of interlaboratory reliability and reproducibility of estrogen and progesterone receptor assays in Europe—Documentation of poor reliability and identification of insufficient microwave antigen retrieval time as a major contributory element of unreliable assays. Am J Clin Pathol 115(1):44–58

    Article  CAS  PubMed  Google Scholar 

  25. Bismuto E, Mancinelli F, d’Ambrosio G, Massa R (2003) Are the conformational dynamics and the ligand binding properties of myoglobin affected by exposure to microwave radiation? Eur Biophys J Biophys Lett 32(7):628–634

    CAS  Google Scholar 

  26. Roy I, Gupta MN (2003) Applications of microwaves in biological sciences. Curr Sci 85(12):1685–1693

    CAS  Google Scholar 

  27. Porcelli M, Cacciapuoti G, Fusco S, Massa R, dAmbrosio G, Bertoldo C, DeRosa M, Zappia V (1997) Non-thermal effects of microwaves on proteins: Thermophilic enzymes as model system. FEBS Lett 402(2–3):102–106

    Article  CAS  PubMed  Google Scholar 

  28. Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2004) Microwave electronics measurement and materials characterization. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  29. Liao PF, Wokaun A (1982) Lightning rod effect in surface enhanced raman-scattering. J Chem Phys 76(1):751–752

    Article  CAS  Google Scholar 

  30. Kappe CO (2002) High-speed combinatorial synthesis utilizing microwave irradiation. Curr Opin Chem Biol 6(3):314–320

    Article  CAS  PubMed  Google Scholar 

  31. Schweitzer B, Kingsmore SF (2002) Measuring proteins on microarrays. Curr Opin Biotechnol 13(1):14–19

    Article  CAS  PubMed  Google Scholar 

  32. Lin JC (1986) Special issue on phased-arrays for hyperthermia treatment of cancer—foreword. IEEE Trans Microw Theory Tech 34(5):481–483

    Article  Google Scholar 

  33. Arber SL, Lin JC (1984) Microwave enhancement of membrane conductance - Effects of Edta, Caffeine and Tetracaine. Physiol Chem Phys Med NMR 16(6):469–475

    CAS  PubMed  Google Scholar 

  34. Arber SL, Lin JC (1985). Microwave-induced changes in nerve-cells - effects of modulation and temperature. Bioelectromagnetics 6(3):257–270

    Article  CAS  PubMed  Google Scholar 

  35. Jain S, Sharma S, Gupta MN (2002) A microassay for protein determination using microwaves. Anal Biochem 311(1):84–86

    Article  CAS  PubMed  Google Scholar 

  36. Green NM (1975) Adv Protein Chem 29:85–133

    CAS  PubMed  Google Scholar 

  37. Wilchek M, Bayer EA (1988) The avidin-biotin complex in bioanalytical applications. Anal Biochem 171(1):1–32

    Article  CAS  PubMed  Google Scholar 

  38. Wilchek M, Bayer EA (1990) Applications of avidin-biotin technology: literature survey. Method Enzymol 184:14–45

    Article  CAS  Google Scholar 

  39. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New York

    Google Scholar 

  40. Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon light scattering in biology and medicine: New sensing approaches, visions and perspectives. Curr Opin Chem Biol 9(5):538–544

    Article  CAS  PubMed  Google Scholar 

  41. I Lumerical Solutions (2006) FDTD solutions manual release 4.0. Vancouver, BC

    Google Scholar 

  42. Suckling JR, Hibbins AP, Lockyear MJ, Preist TW, Sambles JR, Lawrence CR (2004) Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies. Phys Rev Lett 92(14)

  43. Hanafusa S, Iwasaki T, Nishimura N (1994) “Electromagnetic field analysis of a microwave oven by the FD-TD method-a consideration on steady state analysis,” presented at Antennas and Propagation Society International Symposium, 1994. AP-S. Digest

  44. Radzevicius SJ, Chen CC, Peters L, Daniels JJ (2003) Near-field dipole radiation dynamics through FDTD modeling. J Appl Geophys 52(2–3):75–91

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Center for Research Resources, RR008119 (partial salary to CDG). Salary support to the authors from UMBI / MBC and the IoF is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Geddes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Previte, M.J.R., Geddes, C.D. Microwave-Triggered Chemiluminescence with Planar Geometrical Aluminum Substrates: Theory, Simulation and Experiment. J Fluoresc 17, 279–287 (2007). https://doi.org/10.1007/s10895-007-0170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0170-8

Keywords

Navigation