Skip to main content
Log in

Radiation Heat Transfer and Vapor Shielding in a Two-Dimensional Model of an Electrothermal Plasma Source

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Electrothermal (ET) plasma discharges are emerging as valuable mechanisms for pellet injection in magnetic confinement fusion reactors. They have been shown to be capable of achieving the required pellet velocities and pellet launch frequencies required for edge localized mode control. Another advantage of ET plasma discharges is their ability to simulate fusion disruption events by depositing large heat fluxes on exposed materials. A deeper understanding of the heat transfer processes occurring in ET plasma discharges will aid in this particular application. ET plasma discharges involve the passage of high currents (order of tens of kA) along the axis of a narrow, cylindrical channel. As the current passes through the channel, radiant heat is transferred from the plasma core to the capillary wall. Ablated particles eventually fill the plasma channel and the partially ionized plasma is ejected. It is well known that the ablated material separating the plasma core from the ablating surface can act as a vapor shield and limit the radiation heat flux reaching the ablating surface. In this work, the results from a two-dimensional simulation model for ET plasma discharges are presented. The simulation of the plasma in a two-dimensional domain combined with the diffusion approximation for radiation heat transfer is shown to successfully simulate the effects of the vapor shield layer that develops inside these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. AlMousa, L. Winfrey, J.G. Gilligan, M.A. Bourham, Radiative heat transport through vapor plasma for fusion heat flux studies and electrothermal plasma sources applications. J. Nucl. Energy Sci. Power Gener. Technol. 3(1), 1–7 (2014)

    Google Scholar 

  2. M.A. Bourham, O.E. Hankins, O. Auciello, J.M. Stock, B.W. Wehring, R.B. Mohanti, J.G. Gilligan, Vapor shielding and erosion of surfaces exposed to a high heat load in an electrothermal accelerator. IEEE Trans. Plasma Sci. 17(3), 386–391 (1989)

    Article  ADS  Google Scholar 

  3. J. Eapen, Theoretical and Numerical Foundations for Simulation of Ablative Plasma Flow in Electrothermal-Chemical Mass Accelerators. Master’s thesis (North Carolina State University, Raleigh, NC, 1998)

  4. J.R. Echols, A.L. Winfrey, Surface effects of low incident angle, high heat flux plasma on tungsten utilizing an electrothermal source. Manuscript submitted for publication

  5. J.R. Echols, A.L. Winfrey, Ablation of fusion materials exposed to high heat flux in an electrothermal plasma discharge as a simulation for hard disruption. J. Fusion Energy 33, 60–67 (2014)

    Article  Google Scholar 

  6. C.M. Edwards, M.A. Bourham, J.G. Gilligan, Experimental studies of the plasma-propellant interface for electrothermal-chemical launchers. IEEE Trans. Magn. 31(1), 404–409 (1995)

    Article  ADS  Google Scholar 

  7. M.J. Esmond, A.L. Winfrey, Estimation of transient effects of >2 mm radii in electrothermal plasma launchers for fusion fueling. Trans. Am. Nucl. Soc. 113, 381–384 (2015). Washington, D.C., November 8–12, 2015

    Google Scholar 

  8. M.J. Esmond, A.L. Winfrey, Flow characteristics and charge exchange effects in a two-dimensional model of electrothermal plasma discharges. J. Fusion Energy 35(2), 244–252 (2015)

    Article  Google Scholar 

  9. T.E. Gebhart, R.T. Holladay, M.J. Esmond, A.L. Winfrey, Optimization of fusion pellet launch velocity in an electrothermal mass accelerator. J. Fusion Energy 33(1), 32–39 (2014)

    Article  Google Scholar 

  10. J. Gilligan, M.A. Bourham, The use of an electrothermal plasma gun to simulate the extremely high heat flux conditions of a tokamak disruption. J. Fusion Energy 12(3), 311–316 (1993)

    Article  ADS  Google Scholar 

  11. J. Gilligan, D. Hahn, R. Mohanti, Vapor shielding of surfaces subjected to high heat fluxes during a plasma disruption. J. Nucl. Mater. 162–164, 957–963 (1989). doi:10.1016/0022-3115(89)90393-0

    Article  Google Scholar 

  12. J.G. Gilligan, R.B. Mohanti, Time-dependent numerical simulation of ablation-controlled arcs. IEEE Trans. Plasma Sci. 18(2), 190–197 (1990)

    Article  ADS  Google Scholar 

  13. D. Hahn, J.G. Gilligan, Radiation transport through a plasma boundary layer between armatures and material surfaces. IEEE Trans. Magn. 27(1), 251–256 (1991)

    Article  ADS  Google Scholar 

  14. J.D. Hurley, M.A. Bourham, J.G. Gilligan, Numerical simulation and experiment of plasma flow in the electrothermal launcher sirens. IEEE Trans. Magn. 31(1), 616–621 (1995)

    Article  ADS  Google Scholar 

  15. E.Z. Ibrahim, The ablation dominated polymethylmethacrylate arc. J. Phys. D Appl. Phys. 13, 2045–2065 (1980)

    Article  ADS  Google Scholar 

  16. R.W. Kincaid, M.A. Bourham, Electrothermal plasma gun as a pellet injector. J. Fusion Technol. 26(3), 637–641 (1994)

    Google Scholar 

  17. P. Kovitya, J.J. Lowke, Theoretical predictions of ablation-stabilised arcs confined in cylindrical tubes. J. Phys. D Appl. Phys. 17, 1197–1212 (1984)

    Article  ADS  Google Scholar 

  18. X. Li, R. Li, S. Jia, Y. Zhang, Interaction features of different propellants under plasma impingement. J. Appl. Phys. 112(063303), 1–8 (2012)

    Google Scholar 

  19. R. Mohanti, Time Dependent Numerical Simulation of Nonideal Plasmas in Ablation Controlled Arcs. Ph.D. thesis (North Carolina State University, Raleigh, NC, 1990)

  20. H. Ngo, M. Bourham, J. Doster, Heat and current transport in a metal-vapor electrothermal plasma source for electrothermal-chemical guns, in 35th JANNAF Combustion Subcommittee Meeting, (Tucson, AZ, 1998), pp. 187–197

  21. L. Niemeyer, Evaporation dominated high current arcs in narrow channels. IEEE Trans. Power Appar. Syst. 97(3), PAS-950–958 (1978)

    Article  Google Scholar 

  22. N. Orton, Boundary Layer Energy Transport in Plasma Devices. Ph.D. thesis (North Carolina State University, Raleigh, NC, 2000)

  23. L. Pekker, Zero-dimensional time-dependent model of high-pressure ablative capillary discharge for plasma thrusters. J. Propuls. Power 25(4), 958–969 (2009)

    Article  Google Scholar 

  24. L. Pekker, O. Pekker, Model of high-pressure ablative capillary discharge for plasma thrusters. J. Propuls. Power 27(2), 477–484 (2011)

    Article  Google Scholar 

  25. A. Porwitzky, M. Keidar, I. Boyd, Progress towards an end-to-end model of an electrothermal chemical gun. IEEE Trans. Magn. 45(1), 412–416 (2009). doi:10.1109/TMAG.2008.2008688

    Article  ADS  Google Scholar 

  26. C.B. Ruchti, L. Niemeyer, Ablation controlled arcs. IEEE Trans. Plasma Sci. PS–14(4), 423–434 (1986)

    Article  ADS  Google Scholar 

  27. M. Ryan, The interaction of an electrothermal plasma with ja2 solid propellant. Ph.D. thesis (The University of Texas at Austin, Austin, TX , 2006)

  28. A.L. Winfrey, M.A. Al-Halim, A.V. Saveliev, J.G. Gilligan, M.A. Bourham, Enhanced performance of electrothermal plasma sources as fusion pellet injection drivers and space based mini-thrusters via extension of a flattop discharge current. J. Fusion Energy 32, 371–377 (2013)

    Article  ADS  Google Scholar 

  29. A.L. Winfrey, M.A.A. Al-Halim, J.G. Gilligan, A.V. Saveliev, M.A. Bourham, A study of plasma parameters in a capillary discharge with calculations using ideal and nonideal plasma models for comparison with experiment. IEEE Trans. Plasma Sci. 40(3), 843–852 (2012)

    Article  ADS  Google Scholar 

  30. A.L. Winfrey, J.G. Gilligan, M.A. Bourham, A computational study of a capillary discharge pellet accelerator concept for magnetic fusion fueling. J. Fusion Energy 32, 227–234 (2013)

    Article  ADS  Google Scholar 

  31. M.R. Zaghloul, Improved modelling of electrothermal plasma source with radiation transport. J. Phys. D Appl. Phys. 41(225206), 1–10 (2008)

    Google Scholar 

  32. M.R. Zaghloul, M.A. Bourham, J.M. Doster, Semi-analytical modelling and simulation of the evolution and flow of ohmically-heated non-ideal plasmas in electrothermal guns. J. Phys. D Appl. Phys. 34, 772–786 (2001)

    Article  ADS  Google Scholar 

  33. Y. Zeldovich, Y. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, vol. 1 (Academic Press, New York, 1966)

    Google Scholar 

Download references

Acknowledgments

This work is made possible by the Nuclear Engineering Programs at Virginia Tech and The University of Florida. The authors acknowledge the resources provided by Advanced Research Computing at Virginia Tech and NSF grant CNS-0960081 and the HokieSpeed supercomputer at Virginia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micah Esmond.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmond, M., Winfrey, L. Radiation Heat Transfer and Vapor Shielding in a Two-Dimensional Model of an Electrothermal Plasma Source. J Fusion Energ 35, 643–651 (2016). https://doi.org/10.1007/s10894-016-0089-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-016-0089-7

Keywords

Navigation