Skip to main content
Log in

Properties of Electrodeposited Tungsten Coatings on Graphite Substrates for Plasma Facing Components

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Tungsten coating on graphite substrate is considered as one of promising candidate materials of plasma facing components. In this study, tungsten coatings on graphite substrate were successfully prepared by direct current (DC) and pulse current (PC) electrodeposition methods in Na2WO4–WO3 molten salt under the air atmosphere. Pores were found on the surfaces of the tungsten coatings produced by DC electrodeposition method. For the coatings fabricated by PC method, compact and smooth tungsten coatings were successfully obtained. The crystal structure, morphology, density, microhardness, adhesive strength, oxygen content and the thermal conductivity of the coatings fabricated by PC method were investigated. The obtained tungsten coatings had a body centered cubic structure. After electro-deposition for 100 h, the thickness of the tungsten coating reached 810.02 ± 10.40 μm and the oxygen content was 0.03 wt%. The thermal conductivity of the tungsten coating was 134.29 W m−1 K−1. The density of the tungsten coating was 18.83 g cm−3. The hardness of the coating was 492.0 ± 7.8 HV. After deuterium plasma irradiation, the tungsten coatings were prone to blistering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Kim, J. El-Awady, V. Gupta et al., J. Nucl. Mater. 386, 863–865 (2009)

    Article  ADS  Google Scholar 

  2. C. Ruset, E. Grigore, H. Maier et al., Fusion Eng. Des. 86, 1677–1680 (2011)

    Article  Google Scholar 

  3. P.T. Lang, A. Kallenbach, J. Bucalossi et al. in Integrated exhaust scenarios with actively controlled ELMs, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, 2004

  4. C. Ruset, E. Grigore, I. Munteanu et al., Fusion Eng. Des. 84, 1662–1665 (2009)

    Article  Google Scholar 

  5. M.T. Hosseinnejad, M. Shirazi, Z. Ghorannevis et al., J. Fusion Energ. 31(5), 426–431 (2012)

    Article  ADS  Google Scholar 

  6. C. Ruset, E. Grigore, H. Maier, R. Neu, X. Li, H. Dong et al., Phys. Scr. T128, 171–174 (2007)

    Article  ADS  Google Scholar 

  7. N. Sun, Y. Zhang, F. Jiang, S. Lang, Fusion Eng. Des. 89, 2529–2533 (2014)

    Article  Google Scholar 

  8. I. Kosta, E. Vallés, E. Gómez, M. Sarret, C. Müller, Mater. Lett. 65, 2849–2851 (2011)

    Article  Google Scholar 

  9. H. Alimadadi, M. Ahmadi, M. Aliofkhazraei, S. Younesi, Mater. Des. 30, 1356–1361 (2009)

    Article  Google Scholar 

  10. F. Jiang, Appl. Surf. Sci. 363, 389–394 (2016)

    Article  ADS  Google Scholar 

  11. S. Senderoff, G.W. Mellors, Science 153, 1475–1481 (1966)

    Article  ADS  Google Scholar 

  12. Y. Liu, Y. Zhang, Q. Liu, Fusion Eng. Des. 87(11), 1861–1865 (2012)

    Article  Google Scholar 

  13. Y. Liu, Y. Zhang, Q. Liu, Rare Met. 31(4), 350–354 (2012)

    Article  Google Scholar 

  14. F. Jiang, Y.C. Zhang, N. Sun, Appl. Surf. Sci. 331, 278–284 (2015)

    Article  ADS  Google Scholar 

  15. V.V. Malyshev, Prot. Met. 37, 216–222 (2001)

    Article  Google Scholar 

  16. B.G. An, L.X. Li, H.X. Li, Mater. Chem. Phys. 110, 481–485 (2008)

    Article  Google Scholar 

  17. Y. Suzuki, S. Arai, M. Endob, Appl. Surf. Sci. 256, 6914–6917 (2010)

    Article  ADS  Google Scholar 

  18. D. Fang, G. Luo et al., J. Nucl. Mater. 455, 710–716 (2014)

    Article  ADS  Google Scholar 

  19. R.A. Zhu, Pulse Electrodeposition (Publishing House of Electronics Industry of China, Beijing, 1986), p. 7

    Google Scholar 

  20. N. Sun, Y.C. Zhang, S. Lang, J. Fusion Energ. 34, 1417–1422 (2015)

    Article  Google Scholar 

  21. J.J. Huang, X.J. Li, J. Chen, Y. Liu et al., J. Nucl. Mater. 432, 16–19 (2013)

    Article  Google Scholar 

  22. F.L. Chong, J.L. Chen, J.G. Li et al., J. Nucl. Mater. 375, 213–217 (2008)

    Article  ADS  Google Scholar 

  23. Y. Niu, X. Zheng, H. Ji et al., Fusion Eng. Des. 85, 1521–1526 (2010)

    Article  Google Scholar 

  24. M.H.J. ’t Hoen, M. Balden, A. Manhard et al., Nucl. Fusion 54, 083014 (2014)

    Article  ADS  Google Scholar 

  25. M. Balden, A. Manhard, S. Elgeti, J. Nucl. Mater. 452, 248–256 (2014)

    Article  ADS  Google Scholar 

  26. L. Buzi, G. De Temmerman, B. Unterberg et al., J. Nucl. Mater. 463, 320–324 (2015)

    Article  ADS  Google Scholar 

  27. J.B. Condon, T. Schober, J. Nucl. Mater. 207, 1–24 (1993)

    Article  ADS  Google Scholar 

  28. L. Buzi, G.D. Temmerman, B. Unterberg, J. Nucl. Mater. 455, 316–319 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The study was supported by ITER-National Magnetic Confinement Fusion Program (No. 2014GB123000) and the National Natural Science Foundation of China. (Nos. 51172019, 51372017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchun Zhang.

Additional information

Ningbo Sun and Shaoting Lang have contributed equally to this study and share the first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, N., Lang, S., Zhang, Y. et al. Properties of Electrodeposited Tungsten Coatings on Graphite Substrates for Plasma Facing Components. J Fusion Energ 35, 660–665 (2016). https://doi.org/10.1007/s10894-016-0088-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-016-0088-8

Keywords

Navigation