Skip to main content
Log in

Reaction Cross-Section, Stopping Power and Penetrating Distance Calculations for the Structural Fusion Material 54Fe in Different Reactions

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Nuclear reaction codes give us simplicity to investigate phenomena of nuclear physics. There have many computer programs such as TALYS, EMPIRE, ALICE/ASH, PCROSS, FLUKA and GEANT4. The stopping power of alpha, deuteron, proton and triton in 54Fe materials is acquired as it has helpful applications of shielding and choosing the proper thickness of the target. Level density is very important to understanding nuclear reaction mechanism. The knowledge of level density for reaction cross-section calculations are required for various application such as astrophysics, accelerator driven sub-critical systems, nuclear medicine, fission and fusion reactor design and neutron capture. In this study, we calculated the cross-sections of 54Fe using TALYS 1.6 and EMPIRE 3.1 codes for different reactions through the four level density models. Stopping powers and penetrating distances were calculated for the alpha, deuteron, proton and triton particles, taking into consideration all possible reactions in 54Fe for incident energies of 1–45 MeV using GEANT4 calculation code. The obtained reaction cross-section results have been compared with the each other and against the experimental nuclear reaction data existing in EXFOR database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.P. Liu et al., J. Alloys Compd. 579, 599 (2013)

    Article  Google Scholar 

  2. P.M. Raole et al., Trans. IIM 62, 2 (2009)

    Google Scholar 

  3. M. Victoria et al., Nucl. Fusion 41, 1047 (2001)

    Article  ADS  Google Scholar 

  4. K. Ehrlich, Philos. Trans. R. Soc. Lond. A 357, 595 (1999)

    Article  ADS  Google Scholar 

  5. A. Kaplan et al., J. Fusion Energ. 29, 353 (2010)

    Article  ADS  Google Scholar 

  6. A. Kaplan et al., J. Fusion Energ. 33, 510 (2014)

    Article  Google Scholar 

  7. H. Aytekin et al., J. Fusion Energ. 30, 21 (2011)

    Article  ADS  Google Scholar 

  8. T. Nishio et al., J. Nucl. Sci. Technol. 2, 955 (2002)

    Google Scholar 

  9. A. Kaplan et al., J. Fusion Energ. 32, 344 (2013)

    Article  ADS  Google Scholar 

  10. E. Tel et al., J. Fusion Energ. 32, 304 (2013)

    Article  ADS  Google Scholar 

  11. A. Kaplan, J. Fusion Energ. 32, 382 (2013)

    Article  ADS  Google Scholar 

  12. A. Kaplan et al., J. Fusion Energ. 32, 431 (2013)

    Article  ADS  Google Scholar 

  13. H. Aytekin et al., J. Radioanal. Nucl. Chem. 298, 95 (2013)

    Article  Google Scholar 

  14. A. Aydın et al., J. Fusion Energ. 27, 308 (2008)

    Article  ADS  Google Scholar 

  15. E. Tel et al., J. Fusion Energ. 31, 184 (2012)

    Article  ADS  Google Scholar 

  16. A. Kaplan, V. Çapalı, J. Fusion Energ. 33, 299 (2014)

    Article  Google Scholar 

  17. A.J. Koning et al., Nucl. Phys. A. 810, 13 (2008)

    Article  ADS  Google Scholar 

  18. V. Yadav et al., Proc. DAE Symp. Nucl. Phys. 57, 734 (2012)

  19. A. Koning, S. Hilaire, S. Goriely, TALYS–1.6 A Nuclear Reaction Program, User Manual (NRG, The Netherlands), First Edition, December 23 (2013)

  20. M. Herman et al., Nucl. Data Sheets 108, 2655 (2007)

    Article  ADS  Google Scholar 

  21. M. Herman et al., EMPIRE–3.1 Rivoli Modular System for Nuclear Reaction Calculations and Nuclear Data Evaluation, User’s Manual (2012)

  22. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A. 506, 250 (2003)

    Article  ADS  Google Scholar 

  23. Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Database Version of November 20, 2013 (2013), http://www.nndc.bnl.gov/exfor/

  24. R. Crasta et al., J. Radioanal. Nucl. Chem. 290, 367 (2011)

    Article  Google Scholar 

  25. A.J. Koning, M.C. Duijvestijn, Nucl. Phys. A 744, 15 (2004)

    Article  ADS  Google Scholar 

  26. C. Kalbach, Phys. Rev. C 33, 818 (1986)

    Article  ADS  Google Scholar 

  27. J.J. Griffin, Phys. Rev. Lett. 17, 478 (1966)

    Article  ADS  Google Scholar 

  28. C. Cline, M. Blann, Nucl. Phys. A 172, 225 (1971)

    Article  ADS  Google Scholar 

  29. C.K. Cline, Nucl. Phys. A 193, 417 (1972)

    Article  ADS  Google Scholar 

  30. I. Ribansky et al., Nucl. Phys. A 205, 545 (1973)

    Article  ADS  Google Scholar 

  31. W. Dilg et al., Nucl. Phys. A 217, 269 (1973)

    Article  ADS  Google Scholar 

  32. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  33. A.V. Ignatyuk et al., Sov. J. Nucl. Phys. 29, 450 (1979)

    Google Scholar 

  34. A.V. Ignatyuk et al., Phys. Rev. C47, 1504 (1993)

    ADS  Google Scholar 

  35. H. Bethe, Ann. Phys. 5, 325 (1930)

    Article  MATH  Google Scholar 

  36. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Özdoğan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdoğan, H., Çapalı, V. & Kaplan, A. Reaction Cross-Section, Stopping Power and Penetrating Distance Calculations for the Structural Fusion Material 54Fe in Different Reactions. J Fusion Energ 34, 379–385 (2015). https://doi.org/10.1007/s10894-014-9809-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-014-9809-z

Keywords

Navigation