Skip to main content

Advertisement

Log in

Gamma-Ray Shielding Effectiveness of Some Alloys for Fusion Reactor Design

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The gamma-ray shielding effectiveness of some oxide dispersion-strengthen (ODS) alloys by means of mass attenuation coefficients, mean free path, exposure buildup factors and energy absorption buildup factors have been investigated in the present study. The buildup factors were calculated using geometrical progression method for photon energy 0.015–15 MeV up to 40 mfp penetration depth. The mass attenuation coefficients were calculated by using XCOM program and Geant4 simulation methods and found a very good agreement. Our investigation signifies that the low iron content ODS alloys are superior shielding materials with the lower buildup factors. This study should be useful for selection of shielding materials for their applications in fusion reactors design and future nuclear reactor technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.J. Bevelacqua, Radiation Protection Management 22(2), 10–36 (2005)

    Google Scholar 

  2. P. Batistoni et al., Fusion Eng. Des. 69, 649–654 (2003)

    Article  Google Scholar 

  3. P. Pandey et al., J. Nucl. Mater. 437, 29–36 (2013)

  4. H. Zhu et al., Engineering Asset Management and Infrastructure Sustainability, pp 1147–1160 (2012)

  5. A. Hirata et al., Nat. Mater. 10, 922–926 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. Nuclear Corrosion Science and Engineering, Woodhead publishing Limited, 80 High Street, Sawston, Cambridge CB22 3HJ, UK.

  7. S. Ukai et al., J. Nucl. Sci. Technol. 34, 256–263 (1997)

    Article  Google Scholar 

  8. S. Ukai et al., J. Nucl. Sci. Technol. 36, 710–712 (1999)

    Article  Google Scholar 

  9. A. Alamo et al., Structural Applications of Mechanical Alloying (ASM International conference, South Carolina, 1990)

    Google Scholar 

  10. A. Alamo et al., Mater. Sci. Forum 183, 88–90 (1992)

    Google Scholar 

  11. A. Dasgupta et al., Electron Microscopy Studies on Oxide Dispersion Strengthened Steels, Materials Challenges and Testing for Supply of Energy and Resources, (2012) p 117–128

  12. S. C. Chetal et al., Current Status of Fast Reactors and Future Plans in India, Asian Nuclear Prospect (2010)

  13. M.K. Miller et al., Mater. Sci. Eng. 353, 140–145 (2003)

    Article  Google Scholar 

  14. D.K. Mukhopadhyay et al., J. Nucl. Mater. 258–263(2), 1209–1215 (1998)

    Article  Google Scholar 

  15. X.B. Ma et al., Fusion Eng. Des. 87, 1633–1638 (2012)

    Article  Google Scholar 

  16. ANSI/ANS-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials (American Nuclear Society, La Grange Park, Illinois, 1991)

  17. Y. Harima et al., Nucl. Sci. Engg. 94, 24–25 (1986)

    Google Scholar 

  18. V.P. Singh et al., Radiation Effects and Defects in Solids, 169(6), 547–559 (2014)

  19. V.P. Singh et al., Radiation Physics and Chemistry, 98, 14–21 (2014)

  20. V.P. Singh, N. M. Badiger, J. Radiological Protection, 34, 89-101 (2014)

  21. V.P. Singh, N.M. Badiger, Int. J. Nucl. Energ. Sci. Tech. 7, 75-99 (2012)

  22. V.D. Castro et al., J. Phys: Conf. Ser. 241, 012107 (2010)

    ADS  Google Scholar 

  23. M.S. El-Genk, J.M. Tournier, J. Nucl. Mater. 340, 93–112 (2005)

    Article  ADS  Google Scholar 

  24. R.L. Klueh et al., J. Nucl. Mater. 341, 103–114 (2005)

    Article  ADS  Google Scholar 

  25. D.F. Jackson, D.J. Hawkes, Physics Report 70, 169–233 (1981)

    Article  ADS  Google Scholar 

  26. M. J. Berger et al., (2010). http://physics.nist.gov/xcom

  27. S. Agostinelli et al., Nucl. Instrum Methods Phys Res A. 506, 250–303 (2003)

    Article  ADS  Google Scholar 

  28. M.E. Medhat, Y. Wang, Ann. Nucl. Energ. 62, 316–320 (2013)

    Article  Google Scholar 

  29. Y. Harima, Nucl. Sci. and Eng. 83, 299–309 (1983)

    Google Scholar 

  30. M.J. Maron, Numerical analysis: A Practical approach (Macmillan, New York, 2007)

    Google Scholar 

  31. Y. Harima, Radiat. Phys. Chem. 41(4/5), 631–672 (1993)

  32. M. Kurudirek, Y. Ozdemir, Nucl. Instrum. Methods B 269, 7–19 (2011)

    Article  ADS  Google Scholar 

  33. D. Luis, Update to ANSI/ANS-6.4.3-1991 for low-Z materials and compound materials and review of particle transport theory, UNLV, Las Vegas, NV 89154 (2009)

  34. I.I. Bashter, Ann. Nucl. Energ. 24, 1389–1401 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwanath P. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.P., Medhat, M.E. & Badiger, N.M. Gamma-Ray Shielding Effectiveness of Some Alloys for Fusion Reactor Design. J Fusion Energ 33, 555–564 (2014). https://doi.org/10.1007/s10894-014-9704-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-014-9704-7

Keywords

Navigation