Skip to main content

Advertisement

Log in

Ultra-Dense Hydrogen H(−1) as the Cause of Instabilities in Laser Compression-Based Nuclear Fusion

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Ultra-dense hydrogen H(−1) is a quantum material and the first material which is superfluid and superconductive at room temperature. This has been shown in detail for the deuterium form D(−1). With its experimentally determined H–H bond distance of normally 2.3 ± 0.1 pm, it is up to a factor of 105 denser than hydrogen ice composed of H2 molecules. Its existence means that when hydrogen is compressed to high temperature and density, as in laser-induced nuclear inertial-confinement fusion (ICF), sudden localized spontaneous transitions to H(−1) will give spots in the material where pressure falls strongly. Such pressure drops give a non-homogeneous phase which will not ignite smoothly. The energy released by the rapid transition to H(−1) will further cause non-isotropic motion of the target material. We here propose that the instability problems which plague ICF can be circumvented by using ultra-dense hydrogen H(−1) directly as the fusion fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139–142 (1972)

    Article  ADS  Google Scholar 

  2. R. Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S.J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K.A. Tanaka, Y. Toyama, T. Yamanaka, M. Zepf, Nature 412, 798–802 (2001)

    Article  ADS  Google Scholar 

  3. R. Betti, A.A. Solodov, J.A. Delettrez, C. Zhou, Phys. Plasmas 13, 100703-1–100703-4 (2006)

    Article  ADS  Google Scholar 

  4. T. Ditmire, J. Zweiback, V.P. Yanovsky, T.E. Cowan, G. Hays, K.B. Wharton, Nature 398, 489–492 (1999)

    Article  ADS  Google Scholar 

  5. V.A. Smalyuk, Phys. Scr. 86, 058204 (2012)

    Article  ADS  Google Scholar 

  6. S. Badiei, P.U. Andersson, L. Holmlid, Phys. Scr. 81, 045601 (2010)

    Article  ADS  Google Scholar 

  7. S. Badiei, P.U. Andersson, L. Holmlid, Appl. Phys. Lett. 96, 124103 (2010)

    Article  ADS  Google Scholar 

  8. P.U. Andersson, B. Lönn, L. Holmlid, Rev. Sci. Instrum. 82, 013503 (2011)

    Article  ADS  Google Scholar 

  9. T. Guénault, Basic Superfluids (Taylor and Francis, London, 2003)

    Book  MATH  Google Scholar 

  10. P.U. Andersson, L. Holmlid, Phys. Lett. A 375, 1344–1347 (2011)

    Article  ADS  Google Scholar 

  11. L. Holmlid, Int. J. Mass Spectrom. 351, 61–68 (2013)

    Article  ADS  Google Scholar 

  12. P.U. Andersson, L. Holmlid, S.R. Fuelling, J. Supercond. Novel Magn. 25, 873–882 (2012)

    Article  Google Scholar 

  13. P.U. Andersson, L. Holmlid, Int. J. Mass Spectrom. 310, 32–43 (2012)

    Article  ADS  Google Scholar 

  14. F. Winterberg, J. Fusion Energ. 29, 317–321 (2010)

    Article  ADS  Google Scholar 

  15. F. Winterberg, Phys. Lett. A 374, 2766–2771 (2010)

    Article  ADS  MATH  Google Scholar 

  16. L. Holmlid, Int. J. Mass Spectrom. 352, 1–8 (2013)

    Article  ADS  Google Scholar 

  17. A. Lipson, B.J. Heuser, C. Castano, G. Miley, B. Lyakhov, A. Mitin, Phys. Rev. B 72, 212507 (2005)

    Article  ADS  Google Scholar 

  18. L. Holmlid, H. Hora, G. Miley, X. Yang, Laser Part. Beams 27, 529–532 (2009)

    Article  Google Scholar 

  19. L. Holmlid, J. Cluster Sci. 23, 95–114 (2012)

    Article  Google Scholar 

  20. L. Holmlid, J. Cluster Sci. 23, 5–34 (2012)

    Article  Google Scholar 

  21. F. Olofson, L. Holmlid, Nucl. Instrum. Methods B 278, 34–41 (2012)

    Article  ADS  Google Scholar 

  22. L. Holmlid, Int. J. Mass Spectrom. 304, 51–56 (2011)

    Article  ADS  Google Scholar 

  23. F. Olofson, L. Holmlid, J. Appl. Phys. 111, 123502 (2012)

    Article  ADS  Google Scholar 

  24. J.E. Hirsch, Phys. Scr. 85, 035704 (2012)

    Article  ADS  Google Scholar 

  25. S. Badiei, L. Holmlid, Energy Fuels 19, 2235–2239 (2005)

    Article  Google Scholar 

  26. L. Holmlid, Nucl. Instrum. Methods B 296, 66–71 (2013)

    Article  ADS  Google Scholar 

  27. L. Holmlid, Laser Part. Beams 31, 715–722 (2013)

    Article  ADS  Google Scholar 

  28. P.U. Andersson, L. Holmlid, J. Fusion Energ. 31, 249–256 (2012)

    Article  ADS  Google Scholar 

  29. L. Holmlid, Eur. Phys. J. A 48, 11 (2012)

    Article  ADS  Google Scholar 

  30. S. Badiei, P.U. Andersson, L. Holmlid, Laser Part. Beams 28, 313–317 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Holmlid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmlid, L. Ultra-Dense Hydrogen H(−1) as the Cause of Instabilities in Laser Compression-Based Nuclear Fusion. J Fusion Energ 33, 348–350 (2014). https://doi.org/10.1007/s10894-014-9681-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-014-9681-x

Keywords

Navigation