Skip to main content

Advertisement

Log in

Neutronic Analysis of the Laser Inertial Confinement Fusion–Fission Energy (LIFE) Engine Using Various Thorium Molten Salts

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In this study, a neutronic performance of the Laser Inertial Confinement Fusion Fission Energy (LIFE) molten salt blanket is investigated. Neutronic calculations are performed by using XSDRNPM/SCALE5 codes in S8–P3 approximation. The thorium molten salt composition considered in this calculation is 75 % LiF—25 % ThF4, 75 % LiF—24 % ThF4—1 % 233UF4, 75 % LiF—23 % ThF4—2 % 233UF4. Also, effects of the 6Li enrichment in molten salt are performed for all heavy metal salt. The radiation damage behaviors of SS-304 structural material with respect to higher fissionable fuel content and 6Li enrichment are computed. By higher fissionable fuel content in molten salt and with 6Li enrichment (20 and 50 %) in the coolant in form of 75 % LiF—23 % ThF4—2 % 233UF4, an initial TBR >1.05 can be realized. On the other hand, the 75 % LiF—25 % ThF4 or 75 % LiF—24 % ThF4—1 % 233UF4 molten salt fuel as regards maintained tritium self-sufficiency is not suitable as regards improving neutronic performance of LIFE engine. A high quality fissile fuel with a rate of ~2,850 kg/year of 233U can be produced with 75 % LiF—23 % ThF4—2 % 233UF4. The energy multiplication factor is increased with high rate fission reactions of 233U occurring in the molten salt zone. Major damage mechanisms in SS-304 first wall stell have been computed as DPA = 48 and He = 132 appm per year with 75 % LiF—23 % ThF4—2 % 233UF4. This implies a replacement of the SS-304 first wall stell of every between 3 and 4 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.J. Duderstadt, G.A. Moses, Inertial Confinement Fusion (Wiley, USA, 1982)

    Google Scholar 

  2. S. Şahin, M.J. Khan, R. Ahmed, Fuel breeding and actinide transmutation in the life engine. Fusion Eng. Des. 86, 227 (2011)

    Article  Google Scholar 

  3. R.W. Moir et al., Molten salt fuel version of Laser Inertial Fusion Fission Energy (LIFE). Fusion Sci. Technol. 56, 632–640 (2009)

    Google Scholar 

  4. K.J. Kramer et al., Parameter study of the LIFE engine nuclear design. Energy Convers. Manage. 51(9), 1744–1750 (2010)

    Article  Google Scholar 

  5. E.I. Moses, T. Diaz de la Rubia, J.F. Latkowski, J.C. Farmer, R.P. Abbott, K.J. Kramer, P.F. Peterson, H.F. Shaw, R.F. Lehman II, A sustainable nuclear fuel cycle based on Laser Inertial Fusion Energy (LIFE). Fusion Sci. Technol. 56(2), 566–572 (2009)

    Google Scholar 

  6. R.P. Abbott, M.A. Gerhard, K.J. Kramer, J.F. Latkowski, K.L. Morris, P.F. Peterson, J.E. Seifried, Thermal and mechanical design aspects of the LIFE engine. Fusion Sci. Technol. 56(2), 618–624 (2009)

    Google Scholar 

  7. K.J. Kramer, J.F. Latkowski, R.P. Abbott, J.K. Boyd, J.J. Powers, J.E. Seifried, Neutron transport and nuclear burnup analysis for the Laser Inertial Confinement Fusion–Fission Energy (LIFE) engine. Fusion Sci. Technol. 56(2), 625–631 (2009)

    Google Scholar 

  8. W.R. Meier et al., System modeling for the Laser Fusion–Fission Energy (LIFE) power plant. Fusion Sci. Technol. 56(2), 647–651 (2009)

    Google Scholar 

  9. S. Şahin, H.M. Şahin, A. Acır, LIFE hybrid reactor as reactor grade plutonium burner. Energy Convers. Manage. 63, 44–50 (2012)

    Article  Google Scholar 

  10. J.C. Farmer, T. Diaz de la Rubia, E. Moses, (Report Draft) The complete burning of weapons grade plutonium and highly enriched uranium with (Laser Inertial Fusion–Fission Energy) LIFE engine, LLNL-TR-410152 (2009)

  11. S. Şahin, M. Al-Eshaikh, Fission power flattening in hybrid blankets using mixed fuel. Fusion Technol. 12, 395–408 (1987)

    Google Scholar 

  12. S. Şahin, Power flattening in a catalyzed (D, D) fusion driven hybrid blanket using nuclear waste actinides. Nucl. Technol. 92, 93–105 (1990)

    Google Scholar 

  13. L.M. Petrie, SCALE5-Scale System Driver, NUREG/CR-0200, Revision 7, Volume III, Section M1, ORNL/NUREG/CSD-2/V3/R7 (Oak Ridge National Laboratory, Oak Ridge, 2004)

    Google Scholar 

  14. N.M. Greene, L.M. Petrie, XSDRNPM, a one-dimensional discrete-ordinates code for transport analysis, NUREG/CR-0200, Revision 7, 2 , Section F3, ORNL/NUREG/CSD-2/V2/R7 (Oak Ridge National Laboratory, Oak Ridge, 2004)

    Google Scholar 

  15. N.M. Greene, BONAMI, Resonance Self-shielding by the BONDARENKO Method, NUREG/CR-0200, Revision 6, Volume 2, Section F1, ORNL/NUREG/CSD-2/V2/R7 (Oak Ridge National Laboratory, Oak Ridge, 2004)

    Google Scholar 

  16. N.M. Greene, L.M. Petrie, R.M. Westfall, NITAWL-III, Scale System Module for Performing Resonance Shielding and Working Library Production, NUREG/CR-0200, Revision 6, Volume 2, Section F2, ORNL/NUREG/CSD-2/V2/R7 (Oak Ridge National Laboratory, Oak Ridge, 2004)

    Google Scholar 

  17. A. Acır, Effect of nuclear data libraries on tritium breeding in a (D–T) fusion driven reactor. J. Fusion Energ. 27, 301–307 (2008)

    Article  ADS  Google Scholar 

  18. M. Übeyli, A. Acır, Utilization of thorium in a high power density hybrid reactor with innovative coolants. Energy Convers. Manage. 48(2), 576–582 (2007)

    Article  Google Scholar 

  19. M. Übeyli, A. Acır, Neutronic investigation on the ARIES-ST fusion reactor with fissionable molten salts. Energy Convers. Manage. 51(12), 2531–2534 (2010)

    Article  Google Scholar 

  20. M. Übeyli, Neutronic performance of HYLIFE-II fusion reactor using various thorium molten salts. Ann. Nucl. Energy 33, 1417–1423 (2006)

    Article  Google Scholar 

  21. M. Übeyli, H. Yapıcı, Utilization of heavy metal molten salts in the ARIES-RS fusion reactor. J. Fusion Energ. 27(3), 200–205 (2008)

    Article  ADS  Google Scholar 

  22. H. Yapıcı, Study of fissile fuel breeding concept for the force-free helical reactor. Fusion Eng. Des. 65(4), 599–609 (2003)

    Article  Google Scholar 

  23. D.L. Smith et al., Blanket comparison and selection study-final report. Argonne National Laboratory Report, ANL/FPP-84-1 (1984)

  24. R.W. Moir et al., HYLIFE-II, a molten-salt inertial fusion energy power plant design-final report. Fusion Technol. 25(1), 5 (1994)

    Google Scholar 

  25. A. Blink et al., in High-Yield Lithium-Injection FusionEnergy (HYLIFE) Reactor, ed. by K.L. Essary, K.E. Lewis. Lawrence Livermore National Laboratory Report, UCRL-53559 (1985)

  26. M. Perlado, M.W. Guinan, K. Abe, Radiation Damage in Structural Materials, in Energy from Inertial Fusion, International Atomic Energy Agency, Vienna (1995), p. 272

  27. S.J. Zinkle, Materials in extreme nuclear environments (Invited Presentation, National Ignition Facility, Lawrence Livermore National Laboratory, March 17, 2008)

  28. S.J. Zinkle, Microstructures and mechanical properties of irradiated metals and alloys, Materials Issues for Generation IV Systems: Status, Open Questions and Challenges, Book Series: NATO Science for Peace and Security Series B—Physics and Biophysics, pp. 227–244, (2008) doi:10.1007/978-1-4020-8422-5-11

  29. S.J. Zinkle, Fusion materials science: overview of challenges and recent progress. Phys. Plasmas 12, 058101 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author also appreciates the constructive comments of the referees that have helped improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adem Acır.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acır, A. Neutronic Analysis of the Laser Inertial Confinement Fusion–Fission Energy (LIFE) Engine Using Various Thorium Molten Salts. J Fusion Energ 32, 634–641 (2013). https://doi.org/10.1007/s10894-013-9628-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-013-9628-7

Keywords

Navigation