Skip to main content
Log in

Calculations of (n,α) Cross Sections on Some Structural Fusion Materials for Fusion Reactor Technology

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The knowledge of cross section for emission of light charged particles (p, d, t, and α) induced by fast neutrons on structural fusion materials has a critical importance on fusion reactors. The gas production arising from (n,p) and (n,α) reactions causes seriously radiation damage in fusion reactor structure. The radiation damage in fusion related materials is a large problem need to be overcome for development of fusion reactor technology. Particularly, the (n,α) reaction cross section data are required to estimation of the radiation damage effects on structural fusion materials. Therefore, the cross section data for (n,α) reaction induced by fast neutrons are of increasing importance for the success of future fusion reactors. In this study, reaction model calculations of the cross sections of neutron induced reactions on structural fusion materials such as 29 Si, 30 Si, 48 Ti, 50 Ti, 50 Cr, 54 Cr, 54 Fe and 58 Fe have been investigated. The new calculations on the excitation functions of 29 Si (n,α) 26 Mg, 30 Si (n,α) 27 Mg, 48 Ti (n,α) 45 Ca, 50 Ti (n,α) 47 Ca, 50 Cr (n,α) 47 Ti, 54 Cr (n,α) 51 Ti, 54 Fe (n,α) 51 Cr and 58 Fe (n,α) 55 Cr have been carried out for incident neutron energies up to 30 MeV. In these calculations, the pre-equilibrium and equilibrium effects for (n,α) reactions have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. The equilibrium effects of the excitation functions for the investigated reactions are calculated according to the Weisskopf–Ewing model. Also in the present work, the (n,α) reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14–15 MeV energy. The calculated results have been discussed and compared with the available experimental data and found agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Tel et al., J. Fusion Energ. 30, 26 (2011)

    Article  Google Scholar 

  2. S. Şahin et al., Fusion Tech. 10, 84 (1986)

    Google Scholar 

  3. E. Tel et al., J. Fusion Energ. 31(2), 194 (2012)

    Article  MathSciNet  Google Scholar 

  4. M. Übeyli, E. Tel, J. Fusion Energ. 22, 2 (2003)

    Google Scholar 

  5. M. Walt, in Fast neutron physics, part I: techniques, ed. by J.B. Marion, J.L. Fowler (Interscience, New York, 1960), p. 509

    Google Scholar 

  6. S. Şahin, M. Übeyli, J. Fusion Energ. 27, 271 (2008)

    Article  Google Scholar 

  7. S.M. Qaim, 14 MeV Activation Cross Sections Handbook of Spectroscopy, vol. 3 (CRC Press, Boca Raton, Florida, 1981), p. 141

  8. R.A. Forrest, AERE R 12419 (Harwell, UK, 1986)

    Google Scholar 

  9. M. Belgaid, M. Asghar, Nucl. Instr. Method B 142, 463 (1998)

    Article  ADS  Google Scholar 

  10. C.H.M. Broeders, A.Yu. Konobeyev, Nucl. Phys. A 780, 130 (2006)

    ADS  Google Scholar 

  11. C.H.M. Broeders, AYu. Konobeyev, Appl. Radiat. Isot. 65, 454 (2007)

    Article  Google Scholar 

  12. A.D. Majeddin et al., International Nuclear Data Section, 28 (20) (1997)

  13. E. Tel et al., Acta Phys. Slov. 54(2), 191 (2004)

    Google Scholar 

  14. R.A. Forrest, J. Kopecky, Fusion Eng. Des. 82, 73 (2007)

    Article  Google Scholar 

  15. S.L. Goyal, P. Gur, Pramana 72(2), 355 (2009)

    Article  ADS  Google Scholar 

  16. W. R. Meier et al., Lawrence livermore national laboratory, LLNL-JRNL-416976 (2009)

  17. IAEA Publication, Development of radiation resistant reactor core structural materials, http://www.iaea.org/About/Policy/GC/GC51/GC51InfDocuments/English/gc51inf-3-att7_en.pdf

  18. M. Rubel, Trans Fusion Sci Technol 53, 459 (2008)

    Google Scholar 

  19. M. Victoria et al., Nucl. Fusion 41(8), 1047 (2001)

    Article  ADS  Google Scholar 

  20. P.M. Raole et al., Trans. IIM 62, 2–105 (2009)

    Google Scholar 

  21. E. Tel et al., Int. J. Mod. Phys. E. 17(3), 567 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  22. Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Database version of October 12, 2009, http://www.nndc.bnl.gov/exfor/ (2009)

  23. V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)

    Article  ADS  Google Scholar 

  24. P.E. Hodgson, E. Betak, Phys Rep 374, 1–89 (2003)

    Article  ADS  Google Scholar 

  25. M. Blann, Phys. Rev. Lett. 27, 337 (1971)

    Article  ADS  Google Scholar 

  26. M. Blann, Phys. Rev. Lett. 28, 757 (1972)

    Article  ADS  Google Scholar 

  27. M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475 (1983)

    ADS  Google Scholar 

  28. A. Iwamoto, K. Harada, Phys. Rev. C 26, 1821 (1982)

    ADS  Google Scholar 

  29. K. Sato et al., Phys. Rev. C 28, 1527 (1983)

    ADS  Google Scholar 

  30. A.Yu. Konobeyev, A.Yu. Korovin, Kerntechnik 59, 72 (1994)

    Google Scholar 

  31. C.H. M. Broeders et al., ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183, May 2006, http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf

  32. AYu. Konobeyev et al., Acta Phys. Slov. 45(6), 705 (1995)

    Google Scholar 

  33. K.K. Gudima et al., Nucl. Phys. A 401, 329 (1983)

    ADS  Google Scholar 

  34. S.G. Mashnik, User Manual for the Code CEM95 (Joint Institute for Nuclear Research, Dubna, 1995)

    Google Scholar 

  35. V.S. Barashenkov, V.D. Toneev, Interaction of High Energy Particle and Nuclei with Atomic Nuclei, Atomizdat, Moscow, (1972)

  36. V.S. Barashenkov et al., Interaction of particles and nuclei of high and ultrahigh energy with nuclei. Usp. Fiz. Nauk. 109, 91–136 (1973)

    Article  Google Scholar 

  37. S.G. Mashnik et al., CEM03.01User Manual, Los Alamos National Laboratory Report, LA-UR-05-7321 (2005)

  38. S.G. Mashnik et al., Cem03.03 and LAQGSM03 Event Generators for the MCNP6, MCNPX, and MARS15 Transport Codes. Invited lectures presented at the joint ICTP-IAEAAdvanced Workshop on Model Codes for Spallation Reactions, February 4–8,ICTP, Trieste, Italy, LA-UR-08-2931, Los Alamos (2008)

  39. E. Tel et al., J. Phys. G: Nucl. Part. Phys. 29, 2169 (2003)

    Article  ADS  Google Scholar 

  40. E. Tel et al., J. Fusion Energ. 27(3), 188 (2008)

    Article  MathSciNet  Google Scholar 

  41. E. Tel et al., Phys. Rev. C 75, 034614 (2007)

    Article  ADS  Google Scholar 

  42. A. Aydin et al., J. Fusion Energ. 27(4), 314 (2008)

    Article  MathSciNet  Google Scholar 

  43. E. Tel et al., Kerntechnik 76(2), 136 (2011)

    MathSciNet  Google Scholar 

  44. A.V. Ignatyuk et al., Yadernaja Fizika 29, 875 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yiğit, M., Tel, E. & Tanır, G. Calculations of (n,α) Cross Sections on Some Structural Fusion Materials for Fusion Reactor Technology. J Fusion Energ 32, 336–343 (2013). https://doi.org/10.1007/s10894-012-9574-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9574-9

Keywords

Navigation