Skip to main content
Log in

Deuteron-Induced Cross Section Calculations of Some Structural Fusion Materials

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The development of fusion materials for the safety of fusion power systems and understanding nuclear properties is important. The reaction cross-section data have a critical importance on fusion reactors and development for fusion reactor technology. In this study, the theoretical cross sections of some structural fusion materials such as Cr, V, Fe, Ni, Zr and Ta in deuteron-induced reactions have been investigated. The new calculations on the excitation functions of 50Cr(d, α)48V, 51V(d, 2n)51Cr, 51V(d, 4n)49Cr, 54Fe(d, α)52Mn, 54Fe(d, n)55Co, 58Ni(d, α)56Co, 96Zr(d, n)97Nb, 96Zr(d, 2n)96Nb and 181Ta(d, 2n)181W reactions have been carried out up to 90 MeV incident deuteron energies. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the geometry dependent hybrid model and hybrid model. Equilibrium effects have been calculated according to the Weisskopf–Ewing model. The ALICE/ASH computer code has been used in all calculations. The calculated results have been compared with the experimental data existing in EXFOR database and found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.E. Bloom, J. Nucl. Mater. 258–263, 7 (1998)

    Article  Google Scholar 

  2. A. Kaplan et al., Phys. Atom. Nucl. 72(6), 903 (2009)

    Article  ADS  Google Scholar 

  3. Y. Wu, Plasma Sci. Technol. 3(6), 1085 (2001)

    Article  ADS  Google Scholar 

  4. Y. Chen, Y. Wu, Fusion Eng. Des. 49–50, 507 (2000)

    Article  Google Scholar 

  5. Y. Wu et al., Fusion Eng. Des. 51–52, 395 (2000)

    Article  Google Scholar 

  6. Y. Wu, in International Symposium on Fusion Nuclear Technology, San Diego, USA, 7–13 April 2002

  7. S.J. Zinkle et al., J. Nucl. Mater. 258–263, 205 (1998)

    Article  Google Scholar 

  8. D.L. Smith et al., Fusion Eng. Des. 41, 7 (1998)

    Article  Google Scholar 

  9. H. Matsui et al., J. Nucl. Mater. 233–237, 92 (1996)

    Article  Google Scholar 

  10. W.R. Johnson, J.P. Smith, J. Nucl. Mater. 258–263, 1425 (1998)

    Article  Google Scholar 

  11. N.P. Taylor, C.B.A. Forty, J. Nucl. Mater. 283–287, 28 (2000)

    Article  Google Scholar 

  12. E.T. Cheng, J. Nucl. Mater. 258–263, 1767 (1998)

    Article  Google Scholar 

  13. Q. Huang et al., J. Nucl. Mater. 307–311, 1031 (2002)

    Article  Google Scholar 

  14. P.M. Raole et al., Trans. IIM 62(2), 105 (2009)

    Google Scholar 

  15. M. Victoria et al., Nucl. Fusion 41(8), 1047 (2001)

    Article  ADS  Google Scholar 

  16. K. Ehrlich, Philos. Trans. R. Soc. Lond. A 357, 595 (1999)

    Article  ADS  Google Scholar 

  17. A. Kaplan et al., J. Fusion Energ. 29(4), 353 (2010)

    Article  Google Scholar 

  18. H. Nifenecker et al., Prog. Part. Nucl. Phys. 43, 683 (1999)

    Article  ADS  Google Scholar 

  19. N. Jarmie et al., Phys. Rev. C 29, 2031 (1984)

    Article  ADS  Google Scholar 

  20. R.E. Brown, N. Jarmie, Phys. Rev. C 41, 1391 (1990)

    Article  ADS  Google Scholar 

  21. A. Krauss et al., Nucl. Phys. A 467, 273 (1987)

    Article  ADS  Google Scholar 

  22. A. Krauss et al., Nucl. Phys. A 465, 150 (1987)

    Article  ADS  Google Scholar 

  23. S. Engstler et al., Phys. Lett. B 202, 179 (1988)

    Article  ADS  Google Scholar 

  24. Y. Jingsheng et al., Nucl. Phys. A 621, 127 (1997)

    Article  Google Scholar 

  25. A. Kaplan et al., J. Fusion Energ. 29(2), 181 (2010)

    Article  Google Scholar 

  26. R.A. Forrest, J. Kopecky, Fusion Eng. Des. 82, 73 (2007)

    Article  Google Scholar 

  27. S.L. Goyal, P. Gur, Pramana 72(2), 355 (2009)

    Article  ADS  Google Scholar 

  28. A. Aydin et al., J. Fusion Energ. 27(4), 308 (2008)

    Article  MathSciNet  Google Scholar 

  29. A. Aydin et al., J. Fusion Energ. 27(4), 314 (2008)

    Article  MathSciNet  Google Scholar 

  30. E. Tel et al., J. Phys. G: Nucl. Part. Phys. 29, 2169 (2003)

    Article  ADS  Google Scholar 

  31. E. Tel et al., Phys. Rev. C 75, 034614 (2007)

    Article  ADS  Google Scholar 

  32. E. Tel et al., Int. J. Mod. Phys. E 17(3), 567 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  33. E. Tel et al., J. Fusion Energ. 29(4), 322 (2010)

    Article  Google Scholar 

  34. E. Tel et al., J. Fusion Energ. 29, 290 (2010)

    Article  Google Scholar 

  35. E. Tel et al., J. Fusion Energ. 30, 26 (2011)

    Article  Google Scholar 

  36. T. Nishio et al., J. Nucl. Sci. Technol. 2, 955 (2002)

    Google Scholar 

  37. H.A. Yalım et al., J. Fusion Energ. 29(1), 55 (2010)

    Article  ADS  Google Scholar 

  38. V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)

    Article  ADS  Google Scholar 

  39. K.K. Gudima, S.G. Mashnik, V.D. Toneev, Nucl. Phys. A 401, 329 (1983)

    Article  ADS  Google Scholar 

  40. M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475 (1983)

    Article  ADS  Google Scholar 

  41. G.D. Harp, J.M. Miller, Phys. Rev. C 3, 1847 (1971)

    Article  ADS  Google Scholar 

  42. H. Feshbach, A. Kerman, S. Koonin, Ann. Phys. (NY) 125, 429 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  43. T. Tamura, T. Udagawa, H. Lenske, Phys. Rev. C 26, 379 (1982)

    Article  ADS  Google Scholar 

  44. M. Blann, Phys. Rev. Lett. 27, 337 (1971)

    Article  ADS  Google Scholar 

  45. M. Blann, Annu. Rev. Nucl. Sci. 25, 123 (1975)

    Article  ADS  Google Scholar 

  46. M. Blann, J. Bisplinghoff, Code ALICE/LIVERMORE 82 UCID-19614, (1982)

  47. M. Blann, A. Mignerey, W. Scobel, Nukleonika 21, 335 (1976)

    Google Scholar 

  48. C.H.M. Broeders, A.Y. Konobeyev, Y.A. Korovin, V.P. Lunev, M. Blann, ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183, May (2006), http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf

  49. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Yad. Fiz. 29, 875 (1979). [Sov. J. Nucl. Phys. 29, 450 (1979)]

    Google Scholar 

  50. M. Blann, Code ALICE-91, PSR-146, Statistical Model Code System with Fission Competition, Oak Ridge National Laboratory, RSICC Peripheral Shielding Routine Collection, Lawrence Livermore National Laboratory, Livermore, California and IAEA

  51. Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Database version of October 12, 2009 (2009), http://www.nndc.bnl.gov/exfor/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, A., Özdoğan, H., Aydın, A. et al. Deuteron-Induced Cross Section Calculations of Some Structural Fusion Materials. J Fusion Energ 32, 97–102 (2013). https://doi.org/10.1007/s10894-012-9532-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9532-6

Keywords

Navigation