Skip to main content
Log in

Mass Conductivity of Capillary-Porous Colloidal Materials Subjected to Convective Drying

  • HEAT AND MASS TRANSFER IN DISPERSED AND POROUS MEDIA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Mass conducting (diffusional) properties of capillary-porous colloidal materials have been studied experimentally in the process of their convective drying depending on the moisture content and temperature of the material using as an example maize grains of three varieties. The physical mechanisms that influence the dependence of the mass conductivity coefficient of such a material on its moisture content are considered. It is shown that provided there is invariance of the dependence of the local temperature of the material on its local moisture content, the mass conductivity coefficient of the material can be determined depending on the moisture content of the latter and on the drying agent temperature, which simplifies the calculation of the drying kinetics substantially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Rudobashta, Kinetic calculation of the process of convective drying of disperse materials, in: Proc. 4th Minsk Int. Forum "Heat and Mass Transfer MIF-2000," 22–26 May 2000, Vol. 9, Heat and Mass Transfer in Drying Processes, ITMO NAN Belarusi, Minsk (2000), pp. 41–48.

  2. S. P. Rudobashta, Mathematical simulation of the process of convective drying of disperse materials, Izv. Ross. Akad. Nauk, Énerg., No. 4, 98–102 (2000).

  3. A. V. Luikov, Theory of Drying [in Russian], 2nd edn., Énergiya, Moscow (1968).

    Google Scholar 

  4. N. V. Pavlyukevich, Introduction to the Theory of Heat and Mass Transfer in Porous Media [in Russian], ITMO NAN Belarusi, Minsk (2003).

    Google Scholar 

  5. P. V. Akulich (P. S. Kuts Ed.), Themohydrodynamic Processes in the Drying Technique [in Russian], ITMO NAN Belarusi, Minsk (2002).

  6. É. N. Ochnev, S. P. Rudobashta, A. N. Planovskii, and V. M. Dmitriev, Zonal method of determining the dependence of the mass conductivity coefficient on concentration, Teor. Osn. Khim. Tekhnol., IX, No. 4, 491–495 (1975).

    Google Scholar 

  7. S. P. Rudobashta (A. N. Planovskii Ed.), Mass Transfer in Systems with a Solid Phase [in Russian], Khimiya, Moscow (1980).

    Google Scholar 

  8. S. P. Rudobashta, Polymeric materials drying, in: Proc. Int. Symp. on Manufacturing and Materials Processing, 27–31 August 1990, Vol. 1, Dubrovnik, Yugoslavia (1990), pр. 661–678.

  9. S. P. Rudobashta and V. M. Dmitriev, Kinetics and apparatus-technological arrangement of convective drying of disperse polymer materials, J. Eng. Phys. Thermophys., 78, No. 3, 463–473 (2005).

    Article  Google Scholar 

  10. V. M. Dmitriev, Kinetics, Apparatuses and Technique of the Process of Convective Drying of Granulated and Film Polymer Materials, Doctoral Dissertation (in Engineering), TGTU, Tambov (2003).

  11. S. P. Rudobashta and É. M. Kartashov, Diffusion in Chemical and Technological Processes [in Russian], 2nd revised and supplemented edn., KolosS, Moscow (2010).

    Google Scholar 

  12. I. S. Zabavin, S. P. Rudobashta, and V. M. Dmitriev, Investigation of the diffusional properties of grain, Khran. Pererab. Sel′khozsyr., No. 8, 24–28 (2010).

  13. S. P. Rudobashta, A. V. Moryakov, and V. M. Dmitriev, Mass conductivity of rape grain in drying, Khran. Pererab. Sel′khozsyr., No. 8, 42–46 (2012).

  14. S. P. Rudobashta, G. A. Zueva, V. M. Dmitriev, and N. A. Zuev, Mass conductivity in drying colloidal capillary-porous materials, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 57, Issue 1, 103–107 (2014).

    Google Scholar 

  15. S. P. Rudobashta and M. K. Kosheleva, Determination of mass transfer coefficients and mass conductivity from kinetics curves, Izv. Vyssh. Uchebn. Zaved., Tekhnol. Tekst. Prom., No. 6 (360), 175–180 (2015).

  16. P. Salagnac, P. Glouannec, and D. Lecharpentier, Numerical modeling of heat and mass transfer in porous medium during combined hot air, infrared and microwaves drying, Int. J. Heat Mass Transf., 47, 4479–4489 (2004).

    Article  MATH  Google Scholar 

  17. J. Bon and T. Kudra, Enthalpy-driven optimization of intermittent drying, Drying Technol., 25, Issue 4, 523– 532 (2007).

    Article  Google Scholar 

  18. H. A. Vaquiro, G. Clemente, J. V. Garcia-Perez, A. Mulet, and J. Bonb, Enthalpy-driven optimization of intermittent drying of Mangifera indica L, Сhem. Eng. Res. Des., 87, 885–898 (2009).

    Article  Google Scholar 

  19. F. Tariku, K. Kumaran, and P. Fazio, Transient model for coupled heat, air and moisture transfer through multilayered porous media, Int. J. Heat Mass Transf., 53, 3035–3044 (2010).

    Article  MATH  Google Scholar 

  20. C. Kumar, M. U. H. Joardder, T. W. Farrell, G. J. Millar, and M. A. Karim, Mathematical model for intermittent microwave convective drying of food materials, Drying Тechnol., 34, No. 8, 962–973 (2016).

    Article  Google Scholar 

  21. S. P. Rudobashta, G. A. Zueva, and E. M. Kartashov, Heat and mass transfer when drying a spherical particle in an oscillating electromagnetic field, Theor. Found. Chem. Eng., 50, Issue 5, 718–729 (2016).

    Article  Google Scholar 

  22. A. N. Vasil′ev, D. A. Budnikov, N. N. Gracheva, and O. V. Severinov, Perfection of the Technology of Grain Drying in a Dense Bed with the Use of Electrical Technologies, Automatic Control Systems, and Modeling of the Process [in Russian], Nauchn. Tsentr "VIM," Moscow (2016).

  23. O. Krischer, Die wissenschaftlichen Grundlagen der Trocknungstechnik, Springer-Verlag, Berlin–Göttingen–Heidelberg (1956).

    Book  Google Scholar 

  24. V. V. Kafarov and I. N. Dorokhov, System Analysis of the Processes of Chemical Technology. Foundations of the Strategy [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  25. A. N. Planovsky, S. P. Rudobashta, and W. Kast, Kinetik der Erwärmung feuchter Stoffe bei konvektiver Trocknung, Chem.-Ing.-Tech., 48, Jahrgang, Heft 9, S. 803 (1976).

  26. V. A. Rezchikov, O. N. Naleev, and S. V. Savchenko (V. A. Rezchikov Ed.), Grain Drying Technology [in Russian], Almatinsk. Tekhnol. Univ., Altmaty (2000).

  27. S. P. Rudobashta, E. A. Muravleva, and G. A. Zueva, Equilibrium moisture content of maize grains, Nauka Tsentr. Rossii, No. 6 (30), 69–78 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Rudobashta.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 4, pp. 903–911, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudobashta, S.P., Zueva, G.A., Muravleva, E.A. et al. Mass Conductivity of Capillary-Porous Colloidal Materials Subjected to Convective Drying. J Eng Phys Thermophy 91, 845–853 (2018). https://doi.org/10.1007/s10891-018-1808-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1808-x

Keywords

Navigation