Skip to main content
Log in

Cuticular Hydrocarbons as Potential Close Range Recognition Cues in Orchid Bees

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Male Neotropical orchid bees collect volatile chemicals from their environment and compose species-specific volatile signals, which are subsequently exposed during courtship display. These perfumes are hypothesized to serve as attractants and may play a role in female mate choice. Here, we investigated the potential of cuticular hydrocarbons as additional recognition cues. The cuticular hydrocarbons of males of 35 species belonging to four of the five extant euglossine bee genera consisted of aliphatic hydrocarbons ranging in chain lengths between 21 and 37 C-atoms in distinct compositions, especially between sympatric species of similar coloring and size, for all but one case. Cleptoparasitic Exaerete spp. had divergent profiles, with major compounds predominantly constituted by longer hydrocarbon chains (>30 C-atoms), which may represent an adaptation to the parasitic life history (“chemical insignificance”). Phylogenetic comparative analyses imply that the chemical profiles exhibited by Exaerete spp. are evolutionarily divergent from the rest of the group. Female hydrocarbon profiles were not identical to male profiles in the investigated species, with either partial or complete separation between sexes in multivariate analyses. Sexually dimorphic hydrocarbon profiles are assumed to be the basis for sex recognition in a number of insects, and thus may supplement the acquired perfume phenotypes in chemical information transfer. Overall, cuticular hydrocarbons meet the requirements to function as intraspecific and intersexual close range recognition signals; behavioral experiments are needed to determine their potential involvement in mate recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams RP (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing, Carol Stream

    Google Scholar 

  • Adams DC (2014) A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol 63:685–697

    Article  PubMed  Google Scholar 

  • Akino T (2006) Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): description of new very long chained hydrocarbon components. Appl Entomol Zool 41:667–677

    Article  CAS  Google Scholar 

  • Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B 266:1419–1426

    Article  CAS  Google Scholar 

  • Andrade-Silva ACR, Nascimento FS (2015) Reproductive regulation in an orchid bee: social context, fertility and chemical signaling. Anim Behav 106:43–49

    Article  Google Scholar 

  • Ayasse M, Paxton RJ, Tengö J (2001) Mating behavior and chemical communication in the order Hymenoptera. Annu Rev Entomol 46:31–78

    Article  CAS  PubMed  Google Scholar 

  • Bagnères AG, Wicker-Thomas C (2010) Chemical taxonomy with hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons. Biology, biochemistry and chemical ecology. Cambridge University Press, Cambridge, pp 121–162

    Chapter  Google Scholar 

  • Beaulieu JM, O’Meara B (2015) OUwie: analysis of evolutionary rates in an OU Framework. R package version 1.45. http://CRAN.R-project.org/package=OUwie

  • Bembé B (2004a) Functional morphology in male euglossine bees and their ability to spray fragrances (Hymenoptera, Apidae, Euglossini). Apidologie 35:283–291

    Article  Google Scholar 

  • Bembé B (2004b) Revision der Euglossa cordata-Gruppe und Untersuchungen zur Funktionsmorphologie und Faunistik der Euglossini. Dissertation, University of Munich

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  PubMed  Google Scholar 

  • Blomquist GJ, Bagnères AG (2010) Insect hydrocarbons. Biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bollback JP (2006) SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinforma 7:88

    Article  Google Scholar 

  • Cardinal S, Straka J, Danforth BN (2010) Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proc Natl Acad Sci U S A 107:16207–16211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung H, Carroll SB (2015) Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays 37:822–830

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clavel J, with contributions from King A, Paradis E (2015) mvMORPH: multivariate comparative tools for fitting evolutionary models to morphometric data. R package version 1.0.5. http://CRAN.R-project.org/package=mvMORPH

  • Cuvillier-Hot V, Cobb M, Malosse C, Peeters C (2001) Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J Insect Physiol 47:485–495

    Article  CAS  PubMed  Google Scholar 

  • D’Ettorre P, Heinze J (2005) Individual recognition in ant queens. Curr Biol 15:2170–2174

    Article  PubMed  Google Scholar 

  • Dodson CH (1966) Ethology of some bees of the tribe Euglossini (Hymenoptera: Apidae). J Kansas Entomol Soc 39:607–629

    Google Scholar 

  • Dodson CH, Dressler RL, Hills HG, Adams RM, Williams NH (1969) Biologically active compounds in orchid fragrances. Science 164:1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Dressler RL (1982) Biology of the orchid bees (Euglossini). Annu Rev Ecol Syst 13:373–394

    Article  Google Scholar 

  • Dunkelblum E, Tan SH, Silk PJ (1985) Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J Chem Ecol 11:265–277

    Article  CAS  PubMed  Google Scholar 

  • Eltz T, Whitten MW, Roubik DW, Linsenmair KE (1999) Fragrance collection, storage, and accumulation by individual male orchid bees. J Chem Ecol 25:157–176

    Article  CAS  Google Scholar 

  • Eltz T, Roubik DW, Whitten MW (2003) Fragrances, male display and mating behaviour of Euglossa hemichlora: a flight cage experiment. Physiol Entomol 28:251–260

    Article  CAS  Google Scholar 

  • Eltz T, Roubik DW, Lunau K (2005a) Experience-dependent choices ensure species-specific fragrance accumulation in male orchid bees. Behav Ecol Sociobiol 59:149–156

    Article  Google Scholar 

  • Eltz T, Sager A, Lunau K (2005b) Juggling with volatiles: exposure of perfumes by displaying male orchid bees. J Comp Physiol A 191:575–581

    Article  Google Scholar 

  • Eltz T, Zimmermann Y, Pfeiffer C, Ramirez Pech J, Twele R, Francke W, Quezada-Euan JJG, Lunau K (2008) An olfactory shift is associated with male perfume differentiation and species divergence in orchid bees. Curr Biol 18:1844–1848

    Article  CAS  PubMed  Google Scholar 

  • Eltz T, Fritzsch F, Ramirez Pech J, Zimmermann Y, Ramírez SR, Quezada-Euan JJG, Bembé B (2011) Characterization of the orchid bee Euglossa viridissima (Apidae: Euglossini) and a novel cryptic sibling species, by morphological, chemical, and genetic characters. Zool J Linnean Soc 163:1064–1076

    Article  Google Scholar 

  • Ferveur J-F, Sureau G (1996) Simultaneous influence on male courtship of stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila melanogaster. Proc R Soc Lond B 263:967–973

    Article  CAS  Google Scholar 

  • Garófalo CA, Rozen JG Jr (2001) Parasitic behavior of Exaerete smaragdina with descriptions of its mature oocyte and larval instars (Hymenoptera: Apidae: Euglossini). Am Mus Novit 3349

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Article  Google Scholar 

  • Harmon LJ, Schulte JA, Losos JB, Larson A (2003) Tempo and mode of evolutionary radiation in iguanian lizards. Science 301:961–964

    Article  CAS  PubMed  Google Scholar 

  • Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131

    Article  CAS  PubMed  Google Scholar 

  • Howard RW (1993) Cuticular hydrocarbons and chemical communication. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry and biology. University of Nebraska Press, Lincoln, pp 179–226

    Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioural, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  CAS  PubMed  Google Scholar 

  • Kimsey LS (1980) The behaviour of male orchid bees (Apidae, Hymenoptera, Insecta) and the question of leks. Anim Behav 28:996–1004

    Article  Google Scholar 

  • Lambardi D, Dani FR, Turillazzi S, Boomsma JJ (2007) Chemical mimicry in an incipient leafcutting ant social parasite. Behav Ecol Sociobiol 61:843–851

    Article  Google Scholar 

  • Mant J, Brändli C, Vereecken NJ, Schulz CM, Francke W, Schiestl FP (2005) Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularius and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata. J Chem Ecol 31:1765–1787

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J et al (2014) Vegan: community ecology package. R package version 2.2-0. http://CRAN.R-project.org/package=vegan

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Paulmier I, Bagnères A-G, Afonso CMM, Dusticier G, Rivière G, Clément J-L (1999) Alkenes as a sexual pheromone in the alfalfa leaf-cutter bee Megachile rotundata. J Chem Ecol 25:471–490

    Article  CAS  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Pokorny T, Lunau K, Quezada-Euan JJG, Eltz T (2014) Cuticular hydrocarbons distinguish cryptic sibling species in Euglossa orchid bees. Apidologie 45:276–283

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org

  • Rabosky DL (2014) Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9:e89543

    Article  PubMed Central  PubMed  Google Scholar 

  • Rabosky DL, Grundler M, Title P, Anderson C, Shi J, Brown J, Huang H (2015) BAMMtools: analysis and visualization of macroevolutionary dynamics on phylogenetic trees. R package version 2.0.5. http://CRAN.R-project.org/package=BAMMtools

  • Ramírez SR, Eltz T, Fritzsch F, Pemberton R, Pringle EG, Tsutsui ND (2010a) Intraspecific geographic variation of fragrances acquired by orchid bees in native and introduced populations. J Chem Ecol 36:873–884

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramírez SR, Roubik DW, Skov C, Pierce NE (2010b) Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae). Biol J Linn Soc 100:552–572

    Article  Google Scholar 

  • Ramírez SR, Eltz T, Fujiwara MK, Gerlach G, Goldmann-Huertas B, Tsutsui ND, Pierce NE (2011) Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333:1742–1746

    Article  PubMed  Google Scholar 

  • Roubik DW, Hanson PE (2004) Orchid bees of tropical America. Instituto Nacional de Biodiversidad (INBio), Heredia, Costa Rica

    Google Scholar 

  • Rozen JG (2003) Eggs, ovariole numbers, and modes of parasitism of cleptoparasitic bees, with emphasis on Neotropical species (Hymenoptera: Apoidea). Am Mus Novit 3413:1–36

    Article  Google Scholar 

  • Rybak F, Sureau G, Aubin T (2002) Functional coupling of acoustic and chemical signals in the courtship behavior of the male Drosophila melanogaster. Proc R Soc Lond B 269:695–701

    Article  CAS  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson S, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422

    Article  CAS  Google Scholar 

  • Strohm E, Kroiss J, Herzner G, Laurien-Kehnen C, Boland W, Schreier P, Schmitt T (2008) A cuckoo in wolves’ clothing? Chemical mimicry in a specialized cuckoo wasp of the European beewolf (Hymenoptera, Chrysididae and Crabronidae). Front Zool 5:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Symonds MRE, Moussalli A, Elgar MA (2009) The evolution of sex pheromones in an ecologically diverse genus of flies. Biol J Linn Soc 97:594–603

    Article  Google Scholar 

  • Thomas GH, Freckleton RP (2012) MOTMOT: models of trait macroevolution on trees. Methods Ecol Evol 3:145–151

    Article  CAS  Google Scholar 

  • Tregenza T, Wedell N (1997) Definitive evidence for cuticular pheromones in a cricket. Anim Behav 54:979–984

    Article  PubMed  Google Scholar 

  • Vanickova L, Svatos A, Kroiss J, Kaltenpoth M, Do Nascimento RR, Hoskovec M, Brizova R, Kalinova B (2012) Cuticular hydrocarbons of the South American fruit fly Anastrepha fraterculus: variability with sex and age. J Chem Ecol 38:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Vogel S (1966) Parfümsammelnde Bienen als Bestäuber von Orchidaceen und Gloxinia. Österr Bot Z 113:302–361

    Article  Google Scholar 

  • Wakonigg G, Eveleigh L, Arnold G, Crailsheim K (2000) Cuticular hydrocarbon profiles reveal age-related changes in honey bee drones (Apis mellifera carnica). J Apic Res 39:137–141

    CAS  Google Scholar 

  • Wicker-Thomas C (2007) Pheromonal communication involved in courtship behavior in Diptera. J Insect Physiol 53:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Williams NH, Whitten MW (1983) Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol Bull 164:355–395

    Article  CAS  Google Scholar 

  • Zimmermann Y, Roubik DW, Eltz T (2006) Species-specific attraction to pheromonal analogues in orchid bees. Behav Ecol Sociobiol 60:833–843

    Article  Google Scholar 

  • Zimmermann Y, Ramírez SR, Eltz T (2009a) Chemical niche differentiation among sympatric species of orchid bees. Ecology 90:2994–3008

    Article  PubMed  Google Scholar 

  • Zimmermann Y, Roubik DW, Quezada-Euan JJG, Paxton RJ, Eltz T (2009b) Single mating in orchid bees (Euglossa, Apinae): implications for mate choice and social evolution. Insect Soc 56:241–249

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the German Science Foundation to TE (EL 249/6) and short-term fellowships of the German Academic Exchange Service and the Wilhelm und Günter Esser Stiftung to TP are gratefully acknowledged. We thank Lukasz Mitko for sample collection in French Guyana, and the Tropical Station La Gamba, Costa Rica, and J. Javier G. Quezada-Euán at the Universidad Autónoma de Yucatán for supporting this study. Benjamin Bembé helped with a difficult species distinction. SRR received support from the David & Lucile Packard Foundation and the National Science Foundation (DEB-1457753). Two anonymous reviewers and the editor provided comments that improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Pokorny.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Information on samples used for cuticular hydrocarbon (CHC) profile comparisons. Abbreviations of genera: Euglossa = E., Eufriesea = Ef., Eulaema = El. and Exaerete = Ex. (DOCX 19 kb)

ESM 2

ANOSIM results for pairwise comparisons of male cuticular hydrocarbon (CHC) profiles of sympatric species with similar visual appearance. Bonferroni-corrected significance levels are given in the first line of the respective groups. The only comparison not reaching the respective Bonferroni-corrected significance level (E. amazonica and E. cordata) within a group of sympatric and visually similar species is indicated in bold font (DOCX 19 kb)

ESM 3

Model comparison results for chemical evolution in Euglossini. For one-regime models (BM1, OU1) a single parameter estimate is given with subscript 1. In two-regime models (BMM, OUM, OUMV) two parameter estimates are given, one set for non-parasitic lineages (subscript 1) and one set for cleptoparasitic lineages (subscript 2). For two-rate analyses, the mean (± SD) of parameter estimates from 100 simulated stochastic histories of parasitism are given. Univariate analyses from OUwie, multivariate analyses from mvMORPH (DOCX 11 kb)

ESM 4

a) Average amounts in % (SD), rounded to the nearest integer, of cuticular hydrocarbons (CHCs) constituting the cuticular profile of females and males of the same (E. championi, E. dilemma, E. erythrochlora, E. townsendi, E. viridissima and Ex. smaragdina) or the possibly corresponding species. Compounds listed with Kovats’ Retention Index (RI). For compounds of chain lengths larger than 32 C-atoms RI could not be calculated due to limits of the set of alkanes used for reference. Cn = Alkane with n C-atoms, x-Cn:1 = Alkene with n C-atoms, double-bond at position x, Cn:2 = Alkadiene with n C-atoms, Cn:3 = Alkatriene with n C-atoms. Double-bond position for compounds with multiple double-bonds unknown, compounds treated as identical if RIs coincide. Abbreviations of genera: Euglossa = E., Eufriesea = Ef., Eulaema = El. and Exaerete = Ex. b) Differences between average male and female CHC profiles of species for which more than 5 samples per sex could be obtained, including only compounds contributing on average >1 % to the CHC profile of one or both sexes (males: black bars, females: grey bars). Positive standard deviations of means are shown as error bars. Asterisks indicate significant differences in single compounds between the sexes (Mann–Whitney U Test) at the respective Bonferroni-corrected level. I) E. viridissima, differences in minor shared compounds. II) E. dilemma, differences in major shared compounds. III) E. erythrochlora, differences in minor shared compounds as well as compounds exclusive to one of the sexes. Cn = Alkane with n C-atoms, x-Cn:1 = Alkene with n C-atoms, double-bond at position x, Cn:2 = Alkadiene with n C-atoms (DOCX 249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokorny, T., Ramírez, S.R., Weber, M.G. et al. Cuticular Hydrocarbons as Potential Close Range Recognition Cues in Orchid Bees. J Chem Ecol 41, 1080–1094 (2015). https://doi.org/10.1007/s10886-015-0647-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0647-x

Keywords

Navigation