Skip to main content
Log in

Evaluation of the Skin Peptide Defenses of the Oregon Spotted Frog Rana pretiosa Against Infection by the Chytrid Fungus Batrachochytrium dendrobatidis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Population declines due to amphibian chytridiomycosis among selected species of ranid frogs from western North America have been severe, but there is evidence that the Oregon spotted frog, Rana pretiosa Baird and Girard, 1853, displays resistance to the disease. Norepinephrine-stimulated skin secretions were collected from a non-declining population of R. pretiosa that had been exposed to the causative agent Batrachochytrium dendrobatidis. Peptidomic analysis led to identification and isolation, in pure form, of a total of 18 host-defense peptides that were characterized structurally. Brevinin-1PRa, -1PRb, -1PRc, and -1PRd, esculentin-2PRa and -PRb, ranatuerin-2PRa, -2PRb, -2PRc, and -2PRe, temporin-PRb and -PRc were identified in an earlier study of skin secretions of frogs from a different population of R. pretiosa known to be declining. Ranatuerin-2PRf, -2PRg, -2PRh, temporin-PRd, -PRe, and -PRf were not identified in skin secretions from frogs from the declining population, whereas temporin-PRa and ranatuerin-2PRd, present in skin secretions from the declining population, were not detected in the current study. All purified peptides inhibited the growth of B. dendrobatidis zoospores. Peptides of the brevinin-1 and esculentin-2 families displayed the highest potency (minimum inhibitory concentration = 6.25–12.5 μM). The study provides support for the hypothesis that the multiplicity and diversity of the antimicrobial peptide repertoire in R. pretiosa and the high growth-inhibitory potency of certain peptides against B. dendrobatidis are important in conferring a measure of resistance to fatal chytridiomycosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Briggs CJ, Knapp RA, Vredenburg VT (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc Natl Acad Sci U S A 107:9695–9700

    Article  PubMed  CAS  Google Scholar 

  • Clinical laboratory and Standards Institute (2008) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard M07-A8. CLSI, Wayne, PA

    Google Scholar 

  • Conlon JM (2008) Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides 29:1815–1819

    Article  PubMed  CAS  Google Scholar 

  • Conlon JM (2011) The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res 343:201–212

    Article  PubMed  CAS  Google Scholar 

  • Conlon JM, Sonnevend A, Patel M, Davidson C, Nielsen PF, Pal T, Rollins-Smith LA (2003) Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. J Pept Res 62:207–213

    Article  PubMed  CAS  Google Scholar 

  • Conlon JM, Kolodziejek J, Nowotny N (2009) Antimicrobial peptides from the skins of North American frogs. Biochim Biophys Acta 1788:1556–1563

    Article  PubMed  CAS  Google Scholar 

  • Conlon JM, Mechkarska M, Ahmed E, Coquet L, Jouenne T, Leprince, Vaudry H, Hayes MP, Padgett-Flohr GJ (2011) Host defense peptides in skin secretions of the Oregon spotted frog Rana pretiosa: implications for species resistance to chytridiomycosis. Dev Comp Immunol 35:644–649

    Article  PubMed  CAS  Google Scholar 

  • Davidson C, Benard MF, Shaffer HB, Parker JM, O’Leary C, Conlon JM, Rollins-Smith LA (2007) Effects of chytrid and carbaryl exposure on survival, growth and skin peptide defenses in foothill yellow-legged frogs. Environ Sci Technol 41:1771–1776

    Article  PubMed  CAS  Google Scholar 

  • Fisher MC, Garner TW, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310

    Article  PubMed  CAS  Google Scholar 

  • Gammill WM, Fites JS, Rollins-Smith LA (2012) Norepinephrine depletion of antimicrobial peptides from the skin glands of Xenopus laevis. Dev Comp Immunol 37:19–27

    Article  PubMed  CAS  Google Scholar 

  • Greenspan SE, Calhoun AJ, Longcore JE, Levy MG (2012) Transmission of Batrachochytrium dendrobatidis to wood frogs (Lithobates sylvaticus) via a bullfrog (L. catesbeianus) vector. J Wildl Dis 48:575–582

    PubMed  Google Scholar 

  • Hammerson G, Pearl C (2012) Rana pretiosa. In: International Union for Conservation of Nature 2012. IUCN Red List of Threatened Species. Version 2012.1. Electronic database accessible at www.iucnredlist.org

  • James TY, Litvintseva AP, Vilgalys R, Morgan JA, Taylor JW, Fisher MC, Berger L, Weldon C, Du Preez L, Longcore JE (2009) Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations. PLoS Pathog 5:e1000458

    Article  PubMed  Google Scholar 

  • Kaiser K, Pollinger J (2012) Batrachochytrium dendrobatidis shows high genetic diversity and ecological niche specificity among haplotypes in the Maya Mountains of Belize. PLoS One 7:e32113

    Article  PubMed  CAS  Google Scholar 

  • Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen.et sp. Nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Article  Google Scholar 

  • Matutte B, Storey KB, Knoop FC, Conlon JM (2000) Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog, Rana sylvatica, in response to environmental stimuli. FEBS Lett 483:35–138

    Article  Google Scholar 

  • Nishida M, Imura Y, Yamamoto M, Kobayashi S, Yano Y, Matsuzaki K (2007) Interaction of a magainin-PGLa hybrid peptide with membranes: insight into the mechanism of synergism. Biochemistry 46:14284–14290

    Article  PubMed  CAS  Google Scholar 

  • Padgett-Flohr GE (2008) Pathogenicity of Batrachochytrium dendrobatidis in two threatened California amphibians. Herpetol Conserv Biol 3:182–191

    Google Scholar 

  • Padgett-Flohr GE, Hayes MP (2011) Assessment of the vulnerability of the Oregon spotted frog (Rana pretiosa) to the amphibian chytrid fungus (Batrachochytrium dendrobatidis). Herpetol Conserv Biol 6:99–106

    Google Scholar 

  • Pask JD, Woodhams DC, Rollins-Smith LA (2012) The ebb and flow of antimicrobial skin peptides defends northern leopard frogs (Rana pipiens) against chytridiomycosis. Glob Chang Biol 18:1231–1238

    Article  Google Scholar 

  • Pearl CA, Hayes MP (2005) Rana pretiosa, Oregon spotted frog. In: Lannoo MJ (ed) Amphibian declines: The conservation status of United States species. University of California Press, Berkeley, CA, pp 577–580

    Google Scholar 

  • Pearl CA, Bowerman J, Adams MJ, Chelgren ND (2009) Widespread occurrence of the chytrid fungus Batrachochytrium dendrobatidis on Oregon Spotted Frogs (Rana pretiosa). EcoHealth 6:209–218

    Article  PubMed  Google Scholar 

  • Rachowicz LJ, Vredenburg VT (2004) Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages. Dis Aquat Org 61:75–83

    Article  PubMed  Google Scholar 

  • Ramsey JP, Reinert LK, Harper LK, Woodhams DC, Rollins-Smith LA (2010) Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis. Infect Immun 78:3981–3992

    Article  PubMed  CAS  Google Scholar 

  • Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta 1788:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Rollins-Smith LA, Carey C, Longcore J, Doersam JK, Boutte A, Bruzgal JE, Conlon JM (2002) Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Dev Comp Immunol 26:471–479

    Article  PubMed  CAS  Google Scholar 

  • Rollins-Smith LA, Ramsey JP, Reinert LK, Woodhams DC, Livo LJ, Carey C (2009) Immune defenses of Xenopus laevis against Batrachochytrium dendrobatidis. Front Biosci (Sch Ed) 1:68–91

    Google Scholar 

  • Rosenblum EB, Poorten TJ, Settles M, Murdoch GK (2012) Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species. Mol Ecol 21:3110–3120

    Article  PubMed  Google Scholar 

  • Tennessen JA, Woodhams DC, Chaurand P, Reinert LK, Billheimer D, Shyr Y, Caprioli RM, Blouin MS, Rollins-Smith LA (2009) Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev Comp Immunol 33:1247–1257

    Article  PubMed  CAS  Google Scholar 

  • Tobler U, Borgula A, Schmidt BR (2012) Populations of a susceptible amphibian species can grow despite the presence of a pathogenic chytrid fungus. PLoS One 7:e34667

    Article  PubMed  CAS  Google Scholar 

  • Voordouw MJ, Adama D, Houston B, Govindarajulu P, Robinson J (2010) Prevalence of the pathogenic chytrid fungus, Batrachochytrium dendrobatidis, in an endangered population of northern leopard frogs. Rana pipiens. BMC Ecol 10:6

    Article  PubMed  Google Scholar 

  • Voyles J, Vredenburg VT, Tunstall TS, Parker JM, Briggs CJ, Rosenblum EB (2012) Pathophysiology in mountain yellow-legged frogs (Rana muscosa) during a chytridiomycosis outbreak. PLoS One 7:e35374

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Faculty Support Grant and a University/National Research Foundation Grant from U.A.E. University to J.M.C. and NSF grant 1121758 to L.R-S. The authors thank Marko Anderson of the Washington Department of Corrections and Carri LeRoy and Kelli Bush of the Sustainability in Prisons Project, and Allison Abrahamse and Rich Sartor of Northwest Trek, for help in collecting skin secretions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Conlon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conlon, J.M., Reinert, L.K., Mechkarska, M. et al. Evaluation of the Skin Peptide Defenses of the Oregon Spotted Frog Rana pretiosa Against Infection by the Chytrid Fungus Batrachochytrium dendrobatidis . J Chem Ecol 39, 797–805 (2013). https://doi.org/10.1007/s10886-013-0294-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0294-z

Keywords

Navigation