Skip to main content
Log in

Epicuticular Compounds of Drosophila subquinaria and D. recens: Identification, Quantification, and Their Role in Female Mate Choice

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The epicuticle of various Drosophila species consists of long-chain cuticular hydrocarbons (CHCs) and their derivatives that play a role in waterproofing and a dynamic means of chemical communication. Here, via gas chromatography and mass spectrometry, we identified and quantified the epicuticular composition of D. recens and D. subquinaria, two closely related species that show a pattern of reproductive character displacement in nature. Twenty-four compounds were identified with the most abundant, 11-cis-Vaccenyl acetate, present only in males of each species. Also exclusive to males were five tri-acylglycerides. The 18 remaining compounds were CHCs, all shared between the sexes and species. These CHCs were composed of odd carbon numbers (C29, C31, C33, and C35), with an increase in structural isomers in the C33 and C35 groups. Saturated hydrocarbons comprise only methyl-branched alkanes and were found only in the C29 and C31 groups. Alkenes were the least prevalent, with alkadienes dominating the chromatographic landscape in the longer chain lengths. Sexual dimorphism was extensive with 6/8 of the logcontrast CHCs differing significantly in relative concentration between males and females in D. recens and D. subquinaria, respectively. Males of the two species also differed significantly in relative concentration of six CHCs, while females differed in none. Female-choice mating trials revealed directional sexual selection on male CHCs in a population of each species, consistent with female mate preferences for these traits. The sexual selection vectors differed significantly in multivariate trait space, suggesting that different pheromone blends determine male attractiveness in each species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atchison, J. 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London.

    Book  Google Scholar 

  • Bartelt, R. J., Schaner, A. M., and Jackson, L. L. 1985. Cis-vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol. 11:1747–1756.

    Article  CAS  Google Scholar 

  • Bartelt, R. J., Armold, M. T., Schaner, A. M., and Jackson, L. L. 1986. Comparative analysis of cuticular hydrocarbons in the Drosophila virilis species group. Comp. Biochem. Physiol. 83B:731–742.

    CAS  Google Scholar 

  • Bastock, M. and Manning, A. 1955. The courtship of Drosophila melanogaster. Behaviour 8:85–111.

    Article  Google Scholar 

  • Beament, J. W. L. 1945. The cuticular lipoids of insects. J. Exp. Biol. 21:115–131.

    Google Scholar 

  • Billeter, J. C., Atallah, J., Krupp, J. J., Millar, J. G., and Levine, J. D. 2009. Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461:987–991.

    Article  PubMed  CAS  Google Scholar 

  • Blows, M. W. 2002. Interaction between natural and sexual selection during the evolution of mate recognition. Proc. R. Soc. Lond. B 269:1113–1118.

    Article  Google Scholar 

  • Blows, M. W. and Allan, R. A. 1998. Levels of mate recognition within and between two Drosophila species and their hybrids. Am. Nat. 152:826–837.

    Article  PubMed  CAS  Google Scholar 

  • Buckner, J. S. 1993. Cuticular polar lipids of insects, pp. 247–248, in D. W. Stanley-Samuelson and D. R. Nelson (eds.), Insect Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln and London.

    Google Scholar 

  • Butterworth, F. M. 1969. Lipids of Drosophila: A newly detected lipid in the male. Science 163:1356–1357.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, D. A. and Yocom, S. R. 1986. Cuticular hydrocarbons from six species of tephritid fruit flies. Arch. Insect. Biochem. Physiol. 3:397–412.

    Google Scholar 

  • Carlson, D. A., Bernier, U. R., and Sutton, B. D. 1998. Elution patterns from capillary GC for methyl-branched alkanes. J. Chem. Ecol. 24:1845–1865.

    Article  CAS  Google Scholar 

  • Chenoweth, S. F. and Blows, M. W. 2005. contrasting mutual sexual selection on homologous signal traits in Drosophila serrata. Am. Nat. 165:281–289.

    Article  PubMed  Google Scholar 

  • Chenoweth, S. F. and Blows, M. W. 2006. Dissecting the complex genetic basis of mate choice. Nat. Rev. Genet. 7:681–692.

    Article  PubMed  CAS  Google Scholar 

  • Chenoweth, S. F., Rundle, H. D., and Blows, M. W. 2008. Genetic constraints and the evolution of display trait sexual dimorphism by natural and sexual selection. Am. Nat. 171:22–34.

    Article  PubMed  Google Scholar 

  • Chenoweth, S. F., Hunt, J., and Rundle, H. D. 2012. Analyzing and comparing the geometry of individual fitness surfaces, pp. 126–149, in E. I. Svensson and R. Calsbeek (eds.), The Adaptive Landscape in Evolutionary Biology. Oxford University Press, Oxford.

    Google Scholar 

  • Coyne, J. A., Crittenden, A. P., and Mah, K. 1994. Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science 265:1461–1464.

    Article  PubMed  CAS  Google Scholar 

  • Etges, W. J. and Ahrens, M. A. 2001. Premating isolation is determined by larval-rearing substrates in cactophilic Drosophila mojavensis. V. Deep geographic variation in epicuticular hydrocarbons among isolated populations. Am. Nat. 158:585–598.

    Article  PubMed  CAS  Google Scholar 

  • Etges, W. J. and Jackson, L. L. 2001. Epicuticular hydrocarbon variation in Drosophila mojavensis cluster species. J. Chem. Ecol. 27:2125–2149.

    Article  PubMed  CAS  Google Scholar 

  • Everaerts, C., Farine, J.-P., Cobb, M., and Ferveu, J.-F. 2010. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS One 5:e9607.

    Article  PubMed  Google Scholar 

  • Fairbairn, D. J. and Preziosi, R. F. 1996. Sexual selection and the evolution of sexual size dimorphism in the water strider, Aquarius remigis. Evolution 50:1549–1559.

    Article  Google Scholar 

  • Fang, S., Takahashi, A., and Wu, C. 2002. A mutation in the promoter of desaturase 2 is correlated with sexual isolation between Drosophila behavioural races. Genetics 162:781–784.

    PubMed  CAS  Google Scholar 

  • Fernández, M. D. L. P., Chan, Y.-B., Yew, J. Y., Billeter, J.-C., Dreisewerd, K., Levine, J. D., and Kravitz, E. A. 2010. Pheromonal and behavioral cues trigger male-to-female aggression in Drosophila. PLoS Biol. 8:e100541.

    Article  Google Scholar 

  • Ferveur, J. 1997. Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276:1555–1558.

    Article  PubMed  CAS  Google Scholar 

  • Ferveur, J.-F. 2005. Cuticular hydrocarbons: Their evolution and roles in Drosophila pheromonal communication. Behav. Genet. 35:279–295.

    Article  PubMed  Google Scholar 

  • Gibbs, A. G. 1998. Water-proofing properties of cuticular lipids. Am. Zool. 38:471–482.

    CAS  Google Scholar 

  • Gibbs, A. G., Chippindale, A. K., and Rose, M. R. 1997. Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J. Exp. Biol. 200:1821–1832.

    PubMed  CAS  Google Scholar 

  • Giglio, E. M. and Dyer, K. A. 2013. Divergence of premating behaviors in the closely related species Drosophila subquinaria and D. recens. Ecol. Evol. 3: In press.

  • Grillet, M., Dartevelle, L., and Ferveur, J.-F. 2006. A Drosophila male pheromone affects female sexual receptivity. Proc. R. Soc. Biol. 273:315–323.

    Article  CAS  Google Scholar 

  • Hammad, L. A., Cooper, B. S., Fisher, N. P., Montooth, K. L., and Karty, J. A. 2011. Profiling and quantification of Drosophila melanogaster lipids using liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 25:2959–2968.

    Article  PubMed  CAS  Google Scholar 

  • Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.

    Article  PubMed  CAS  Google Scholar 

  • Howard, R. W., Mcdaniel, C. A., and Blomquist, G. J. 1978. Cuticular hydrocarbons of the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). J. Chem. Ecol. 4:233–245.

    Google Scholar 

  • Howard, R. W., Jackson, L. L., Banse, H., and Blows, M. W. 2003. Cuticular hydrocarbons of Drosophila birchii and D. serrata: Identification and role in mate choice in D. serrata. J. Chem. Ecol. 29:961–976.

    Article  PubMed  CAS  Google Scholar 

  • Jaenike, J., Dyer, K. A., Cornish, C., and Minhas, M. S. 2006. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol. 4:e325.

    Article  PubMed  Google Scholar 

  • Jallon, J. M. 1984. A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet. 14:441–478.

    Article  PubMed  CAS  Google Scholar 

  • Jallon, J. M. and David, J. R. 1987. Variation in cuticular hydrocarbons among the eight species of the Drosophila melanogaster subgroup. Evolution 41:294–302.

    Article  Google Scholar 

  • Jallon, J. M. and Wicker-Thomas, C. 2003. Genetic studies on pheromone production in Drosophila, pp. 253–280, in G. J. Bloomquist and R. G. Vogt (eds.), Insect Pheromone Biochemistry and Molecular Biology: The Biosynthesis and Detection of Pheromones and Plant Volatiles. Elsevier Academic Press, Amsterdam, The Netherlands.

    Chapter  Google Scholar 

  • Kent, C., Azanchi, R., Smith, B., Formosa, A., and Levine, J. D. 2008. Social context influences chemical communication in D. melanogaster males. Curr. Biol. 18:1384–1389.

    Article  PubMed  CAS  Google Scholar 

  • Krupp, J. J., Kent, C., Billeter, J.-C., Azanchi, R., So, A. K.-C., Lucas, C., Smith, B. P., Schonfeld, J. A., and Levine, J. D. 2008. Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr. Biol. 18:1373–1383.

    Article  PubMed  CAS  Google Scholar 

  • Kwan, L. and Rundle, H. D. 2009. Adaptation to desiccation fails to generate pre- and postmating isolation in replicate Drosophila melanogaster laboratory populations. Evolution 64:710–723.

    Article  PubMed  Google Scholar 

  • Lande, R. and Arnold, S. J. 1983. The measurement of selection on correlated characters. Evolution 37:1210–1226.

    Article  Google Scholar 

  • Lockey, K. H. 1979. Insect cuticular hydrocarbons. Comp. Biochem. Physiol. 65:457–462.

    Google Scholar 

  • Markow, T. A. and Toolson, E. C. 1990. Temperature effects on epicuticular hydrocarbons and sexual isolation in Drosophila mojavensis, pp. 315–331, in S. F. Barker, W. T. Starmer, and R. J. McIntyre (eds.), Ecological and Evolutionary Genetics of Drosophila. Plenum Press, New York.

    Chapter  Google Scholar 

  • Mehren, J. E. 2007. Mate recognition: Should fly stay or should fly go. Curr. Biol. 17:240–242.

    Article  Google Scholar 

  • Mitchell-Olds, A. T. and Shaw, R. G. 1987. Regression analysis of natural selection: Statistical inference and biological interpretation. Evolution 41:1149–1161.

    Article  Google Scholar 

  • Miwa, T. K. 1963. Identification of peaks in gas–liquid chromatography. J. Am. Oil Chem. Soc. 40:309–313.

    Article  CAS  Google Scholar 

  • Mjøs, S. A. 2006. Prediction of equivalent chain lengths from two-dimensional fatty acid retention indices. J. Chromatogr. A 1122:249–254.

    Article  PubMed  Google Scholar 

  • Nemoto, T., Doi, M., Oshio, K., Matsubayashi, H., Oguma, Y., Suzuki, T., and Kuvahara, Y. 1994. (Z, Z)-5,27-Tritriacontadiene: Major sex pheromone of Drosophila pallidosa (Diptera; Drosophilidae). J. Chem. Ecol. 20:3029–3037.

    Article  CAS  Google Scholar 

  • Ogg, C. L. and Stanley-Samuelson, D. W. 1992. Phospholipid and triacylglycerol fatty acid compositions of the major life stages and selected tissues of the tobacco hornworn Manduca sexta. Comp. Biochem. Physiol. 101:345–351.

    Article  Google Scholar 

  • Oliveira, C. C., Manfrin, M. H., Sene, F. D. M., Jackson, L. L., and Etges, W. J. 2011. Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila. BMC Evol. Biol. 11:179.

    Article  PubMed  Google Scholar 

  • Petfield, D., Chenoweth, S. F., Rundle, H. D., and Blows, M. W. 2005. Genetic variance in female condition predicts indirect genetic variance in male sexual display traits. Proc. Natl. Acad. Sci. U. S. A. 102:6045–6050.

    Article  PubMed  CAS  Google Scholar 

  • Rouault, J., Capy, P., and Jallon, J. M. 2000. Variations of male cuticular hydrocarbons with geoclimatic variables: An adaptive mechanism in Drosophila melanogaster? Genetica 110:117–130.

    Article  PubMed  CAS  Google Scholar 

  • Rundle, H. D., Chenoweth, S. F., and Blows, M. W. 2009. The diversification of mate preferences by natural and sexual selection. J. Evol. Biol. 22:1608–1615.

    Article  PubMed  CAS  Google Scholar 

  • Sall, J., Creighton, L., and Lehman, A. 2005. JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP and JMP IN Software. Thomson Learning, Belmont, CA.

    Google Scholar 

  • Savarit, F. and Ferveur, J.-F. 2002. Genetic study of the production of sexually dimorphic cuticular hydrocarbons in relation with the sex-determination gene transformer in Drosophila melanogaster. Genet. Res. 79:23–40.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, M. D., Hunt, J., and Hosken, D. J. 2012. Antagonistic responses to natural and sexual selection and the sex-specific evolution of cuticular hydrocarbons in Drosophila simulans. Evolution 66:665–677.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker, D. D., Katju, V., and Jaenike, J. 1999. Wolbachia and the evolution of reproductive isolation between Drosophila recens and Drosophila subquinaria. Evolution 53:1157–1164.

    Article  Google Scholar 

  • Toolson, E. C. and Kuper-Simbron, R. 1989. Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: Effects on sexual dimorphism and thermal-acclimation ability. Evolution 43:468–473.

    Article  Google Scholar 

  • van Homrigh, A., Higgie, M., McGuigan, K., and Blows, M. W. 2007. The depletion of genetic variance by sexual selection. Curr. Biol. 17:528–532.

    Article  PubMed  Google Scholar 

  • Wagner, W. 1998. Measuring female mating preferences. Anim. Behav. 55:1029–1042.

    Article  PubMed  Google Scholar 

  • Wheeler, M. R. 1960. New species of the quinaria group of Drosophila (Diptera, Drosophilidae). Southwest. Nat. 5:160–164.

    Article  Google Scholar 

  • Wigglesworth, V. B. 1945. Transpiration through the cuticle of insects. J. Exp. Biol. 21:97–114.

    Google Scholar 

  • Yew, J. Y., Cody, R. B., and Kravitz, E. A. 2008. Cuticular hydrocarbon analysis of an awake behaving fly using direct analysis in real-time time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 105:7135–7140.

    Article  PubMed  CAS  Google Scholar 

  • Yew, J. Y., Dreisewerd, K., Luftmann, H., Müthing, J., and Kravitz, E. A. 2009. A new male sex-pheromone and novel cuticular cues for chemical communication in Drosophila. Curr. Biol. 19:1245–1254.

    Article  PubMed  CAS  Google Scholar 

  • Yew, J. Y., Dreisewerd, K., de Oliveira, C. C., and Etges, W. J. 2011. Male-specific transfer and fine scale spatial differences of newly identified cuticular hydrocarbons and triacylglycerides in a Drosophila species pair. PLoS One 6:e16898.

    Article  PubMed  CAS  Google Scholar 

  • Zawistowski, S. and Richmond, R. C. 1986. Inhibition of courtship and mating of Drosophila melanogaster by the male-produced lipid, cis-vaccenyl acetate. J. Insect Physiol. 32:189–192.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Jaenike for sharing flies collected in Idaho and A. Ramakrishnan for help with statistical analyses and the preparation of figures. PMM and SC acknowledge the University of Ottawa for Core Facilities support of the John L. Holmes Mass Spectrometry Facility. Funding was provided by the National Science Foundation (KAD and HDR) and the Natural Sciences and Engineering Research Council of Canada (HDR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard D. Rundle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 262 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, S., Sztepanacz, J.L., White, B.E. et al. Epicuticular Compounds of Drosophila subquinaria and D. recens: Identification, Quantification, and Their Role in Female Mate Choice. J Chem Ecol 39, 579–590 (2013). https://doi.org/10.1007/s10886-013-0284-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0284-1

Keywords

Navigation