Skip to main content
Log in

Complex Attractors and Patterns in Reaction–Diffusion Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider semiflows generated by initial boundary value problems for reaction–diffusion systems. In these systems, reaction terms satisfy general conditions, which admit a transparent chemical interpretation. It is shown that the semiflows generated by these initial boundary value problems exhibit a complicated large time behavior. Any structurally stable finite dimensional dynamics (up to an orbital topological equivalence) can be realized by these semiflows by a choice of appropriate external sources and diffusion coefficients (nonlinear terms are fixed). Results can be applied to the morphogenesis and pattern formation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V.I.: Geometric Methods in Theory of Ordinary Differential Equations, 2nd edn. Springer, New York (1988)

    Book  MATH  Google Scholar 

  2. Carr, J., Pego, R.: Invariant manifolds for metastable patterns in \(u_t = \epsilon ^2 u_{xx} - f(u)\). Proc. R. Soc. Edimburgh 116A, 133–160 (1990)

    Article  MATH  Google Scholar 

  3. Carvalho, A.N., Langa, Jose A., Robinson, James C.: Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems. Springer, New York (2013)

    Book  MATH  Google Scholar 

  4. Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integrable Manifolds and Inertial Manifolds for Dissipative Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  5. Dancer, E.N., Poláčik, P.: Realization of Vector Fields and Dynamics of Spatially Homogeneous Parabolic Equation, vol. 668. Memoirs of American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  6. Fiedler, B., Mallet-Paret, J.: The Poincare–Bendixson theorem for scalar reaction diffusion equations. Arch. Ration. Mech. Anal. 107, 325–345 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guckenheimer, J., Holmes, P.: Nonlinear Osscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1981)

    Google Scholar 

  8. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

    MATH  Google Scholar 

  9. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Book  Google Scholar 

  10. Hirsch, M.W.: Stability and convergence in strongly monotone dynamical systems. J. Reine. Angew. Math. 383, 1–58 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Hirsch, M.W., Smith, H.: Monotone dynamical systems. In: Barbu, V., Lefter, C., Bartsch, T., Szulkin, A., Crjá, O., Vrabie, I.I., Hirsch, M.W., Smith, H., López-Gómez, J., Ntouyas, S.K. (eds.) Handbook of Differential Equations: Ordinary Differential Equations, pp. 239–357. Elsevier B. V, Amsterdam (2005)

    Google Scholar 

  12. Il’yashenko, YuS: Weakly contracting systems and attractors of Galerkin approximation for Navier–Stokes equation on two-dimensional torus. Usp. Mech. 1, 31–63 (1982)

    MathSciNet  Google Scholar 

  13. Katok, A.B., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications, vol. 54. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  14. Ladygenskaya, O.A.: Finding minimal global attractors for Navier–Stokes equations and other partial differential equations. Usp. Mat. Nauk 42, 25–60 (1987)

    MathSciNet  Google Scholar 

  15. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci 20, 130–141 (1963)

    Article  Google Scholar 

  16. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhauser, Basel (1995)

    Book  MATH  Google Scholar 

  17. Matano, H.: Convergence of solutions of one-dimensional semilinear parabolic equations. J. Math. Kyoto Univ. 18, 221–227 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Poláčik, P. (2002) Parabolic equations: Asymptotic behaviour and Dynamics on Invariant Manifolds, Ch.16, pp. 835-883, in: Handbook of dynamical systems, Vol 2., Edited by B. Fiedler

  19. Poláčik, P.: Realization of any finite jet in a scalar semilinear parabolic equation on the ball in \(R^2\). Annali Scuola Norm Pisa 17, 83–102 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Poláčik, P.: Complicated dynamics in scalar semilinear parabolic equations in higher space dimensions. J. Differ. Equ. 89, 244–271 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Poláčik, P.: High dimensional \(\omega \)-limit sets and chaos in scalar parabolic equations. J. Differ. Equ. 119, 24–53 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Prigogine, I., Nicolis, G.: Self-Organization in Non-equilibrium Systems. Wiley, New York (1977)

    MATH  Google Scholar 

  23. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics and Chaos. CRC Press, Taylor & Francis (1999)

    MATH  Google Scholar 

  24. Ruelle, D.: Elements of Differentiable Dynamics and Bifurcation Theory. Academic Press, Boston (1989)

    MATH  Google Scholar 

  25. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys 20, 167–192 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rybakowski, K.P.: Realization of arbitrary vector fields on center manifolds of parabolic Dirichlet BVP’s. J. Differ. Equ. 114, 199–221 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Simon, L.: Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. 118, 525–571 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Smoller, J.: Shock Waves and Reaction–Diffusion Systems. Springer, New York (1983)

    MATH  Google Scholar 

  29. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  30. Tucker, W.: A Rigorous ODE Solver and Smale’s 14th Problem. Found. Comp. Math. 2, 53–117. http://www.math.uu.se/~warwick/main/rodes.html (2002)

  31. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  32. Vakulenko, S.A.: Reaction–diffusion systems with prescribed large time behaviour. Annales de L’Institut H Poincarè Physique Théorique 66, 373–410 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Vakulenko, S.A.: Dissipative systems generating any structurally stable chaos. Adv. Differ. Equ. 5(7–9), 1139–1178 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Vakulenko, S., Radulescu, O., Reinitz, J.: Size regulation in the segmentation of Drosophila: interacting interfaces between localized domains of gene expression ensure robust spatial patterning. Phys. Rev. Lett. 103, 168102–168106 (2009)

    Article  Google Scholar 

  35. Vakulenko, S., Grigoriev, D., Weber, A.: Reduction methods and chaos for quadratic systems of differential equations. Stud. Appl. Math. 135, 225–247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vanderbauwhede, A., Ioss, G.: Center manifold theory in infinite dimensions. In Dynamics Reported: Expositions in Dynamical systems, Springer, Berlin, pp. 125–163, (1992)

  37. Wiggins, S.: Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Spinger, New York (1994)

    Book  MATH  Google Scholar 

  38. Wolpert, L.: Positional information and pattern formation in development. Dev. Genet. 15, 485–490 (1994)

    Article  Google Scholar 

  39. Yagi, A.: Abstract Parabolic Evolution Equations and Their Applications. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  40. Zelenyak, T.I.: Stabilization of solution of boundary nonlinear problems for a second order parabolic equations with one space variable. Differ. Equ. 4, 17–22 (1968)

    MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to Referee for useful remarks which helped to improve the paper.

The author was financially supported by Government of Russian Federation, Grant 074-U01, also supported in part by Grant RO1 OD010936 (formerly RR07801) from the US NIH and by Grant 16-01-00648 of Russian Fund of Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Vakulenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakulenko, S. Complex Attractors and Patterns in Reaction–Diffusion Systems. J Dyn Diff Equat 30, 175–207 (2018). https://doi.org/10.1007/s10884-016-9552-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-016-9552-4

Keywords

Navigation