Skip to main content
Log in

Exponential Propagation for Fractional Reaction–Diffusion Cooperative Systems with Fast Decaying Initial Conditions

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study the time asymptotic propagation of solutions to the reaction–diffusion cooperative systems with fractional diffusion. We prove that the propagation speed is exponential in time, and we find the precise exponent of propagation. This exponent depends on the smallest index of the fractional laplacians and on the principal eigenvalue of the matrix DF(0) where F is the reaction term. We also note that this speed does not depend on the space direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. Dover Publications, New York (1972)

    MATH  Google Scholar 

  2. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barles, G., Evans, L.C., Souganidis, P.E.: Wavefront propagation for reaction-diffusion systems of PDE. Duke Math. J. 61(3), 835–858 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonforte, M., Vazquez, J.: Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Busca, J., Sirakov, B.: Harnack type estimates for nonlinear elliptic systems and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 543–590 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabré, X., Roquejoffre, J.: The influence of fractional diffusion in Fisher-KPP equation. Commun. Math. Phys. 320, 679–722 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cabré, X., Coulon, A.C., Roquejoffre, J.M.: Propagation in Fisher-KPP type equations with fractional diffusion in periodic media. C. R. Math. Acad. Sci. Paris 350(19–20), 885–890 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdélyi, A.: Higher Transcendental Functions, vol. I. McGraw-Hill Book Company, Inc., New York (1953)

    MATH  Google Scholar 

  9. Evans, L.C., Souganidis, P.E.: A PDE approach to geometric optics for certain semilinear parabolic equations. Indiana Univ. Math. J. 45(2), 141–172 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Felmer, P., Yangari, M.: Fast propagation for fractional KPP equations with slowly decaying initial conditions. SIAM J. Math. Anal. 45(2), 662–678 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamel, F., Roques, L.: Fast propagation for KPP equations with slowly decaying initial conditions. J. Differ. Equ. 249, 1726–1745 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer-Verlag, New York (1981)

  13. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Moscou Sér. Inter. A 1, 1–26 (1937)

    Google Scholar 

  14. Lewis, M., Li, B., Weinberger, H.: Spreading speed and linear determinacy for two-species competition models. J. Math. Biol. 45, 219–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lui, R.: Biological growth and spread modeled by systems of recursions. I. Mathematical theory. Math. Biosci. 93(2), 269–295 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stan, D., Vázquez, L.J.: The Fisher-KPP equation with nonlinear fractional diffusion. SIAM J. Math. Anal. 46(5), 3241–3276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Weinberger, H.F., Lewis, M., Li, B.: Anomalous spreading speeds of cooperative recursion systems. J. Math. Biol. 55, 207–222 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Weinberger, H.F., Lewis, M., Li, B.: Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 183–218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.321186 - ReaDi -Reaction-Diffusion Equations, Propagation and Modeling. M. Y. was partially supported by Becas de Doctorado SENESCYT-Ecuador. The authors thank Professor J.-M. Roquejoffre for fruitful discussions and the anonymous referee for his/her comments, which resulted in a new version that gives more value to our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Yangari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulon, AC., Yangari, M. Exponential Propagation for Fractional Reaction–Diffusion Cooperative Systems with Fast Decaying Initial Conditions. J Dyn Diff Equat 29, 799–815 (2017). https://doi.org/10.1007/s10884-015-9479-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9479-1

Keywords

Mathematics Subject Classification

Navigation