Skip to main content
Log in

Stability for Monostable Wave Fronts of Delayed Lattice Differential Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the stability of traveling wave fronts for delayed monostable lattice differential equations. We first investigate the existence non-existence and uniqueness of traveling wave fronts by using the technique of monotone iteration method and Ikehara theorem. Then we apply the contraction principle to obtain the existence, uniqueness, and positivity of solutions for the Cauchy problem. Next, we study the stability of a traveling wave front by using comparison theorems for the Cauchy problem and initial-boundary value problem of the lattice differential equations, respectively. We show that any solution of the Cauchy problem converges exponentially to a traveling wave front provided that the initial function is a perturbation of the traveling wave front, whose asymptotic behaviour at \(-\infty \) satisfying some restrictions. Our results can apply to many lattice differential equations, for examples, the delayed cellular neural networks model and discrete diffusive Nicholson’s blowflies equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bates, P.W., Chmaj, A.: A discrete convolution model for phase transitions. Arch. Ration. Mech. Anal. 150, 281–305 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carr, J., Chmaj, A.: Uniqueness of traveling waves for nonlocal monostable equations. Proc. AMS 132, 2433–2439 (2004)

    Article  MATH  Google Scholar 

  3. Chen, X., Guo, J.-S.: Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326, 123146 (2003)

    Article  MathSciNet  Google Scholar 

  4. Chow, S.-N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Differ. Equ. 149, 248–291 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chua, L.O.: CNN: A Paradigm for Complexity, World Scientific Series on Nonlinear Science, Series A, vol. 31. World Scientific, Singapore (1998)

    Google Scholar 

  6. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  8. Ellison, W., Ellison, F.: Prime Numbers, A Wiley-Interscience Publication. Wiley, New York (1985)

    MATH  Google Scholar 

  9. Erneux, T., Nicolis, G.: Propagation waves in discrete bistable reaction-diffusion systems. Physica D 67, 237–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gurney, W.S.C., Blythe, S.P., Nisbet, R.M.: Nicholson’s blowflies revisited. Nature 287, 17–21 (1990)

    Article  Google Scholar 

  11. Hsu, C.-H., Li, C.-H., Yang, S.-Y.: Diversity of traveling wave solutions in delayed cellular neural networks. Int. J. Bifurc. Chaos 18, 3515–3550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hsu, C.-H., Lin, S.-S.: Existence and multiplicity of traveling waves in a lattice dynamical system. J. Differ. Equ. 164, 431–450 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hsu, C.-H., Lin, S.-S., Shen, W.: Traveling waves in cellular neural networks. Int. J. Bifurc. Chaos 9, 1307–1319 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hsu, C.-H., Yang, S.-Y.: On camel-like traveling wave solutions in cellular neural networks. J. Differ. Equ. 196, 481–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hudson, H., Zinner, B.: Existence of traveling waves for a generalized discrete Fisher’s equations. Commun. Appl. Nonlinear Anal. 1, 23–46 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, C.-K., Mei, M.: On travelling wavefronts of Nicholsons blowflies equation with diffusion. Proc. R. Soc. Edinb. 140A, 135152 (2010)

    MathSciNet  Google Scholar 

  18. Mallet-Paret, J.: The global structure of traveling waves in spatial discrete dynamical systems. J. Dyn. Differ. Equ. 11, 49–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, S., Zou, X.: Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusion monostable equation with delay. J. Differ. Equ. 217, 54–87 (2005)

    Article  MATH  Google Scholar 

  20. Ma, S., Zou, X.: Propagation and its failure in a lattice delayed differential equation with global interaction. J. Differ. Equ. 212, 129–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mei, M., Ou, C., Zhao, X.-Q.: Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations. SIAM J. Math. Anal. 42, 2762–2790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mei, M., Wang, Y.: Remark on stability of traveling waves for nonlocal Fisher-KPP equations. Int. J. Numer. Anal. Model. B 2, 379–401 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Nicholson, A.J.: Compensatory reactions of populations to stresses, and their evolutionary significance. Aust. J. Zool. 2, 1–8 (1954a)

    Article  Google Scholar 

  24. Nicholson, A.J.: An outline of the dynamics of animal populations. Aust. J. Zool. 2, 9–65 (1954b)

    Article  Google Scholar 

  25. Shi, Z.-X., Li, W.-T., Cheng, C.P.: Stability and uniqueness of traveling wavefronts in a two-dimensional lattice differential equation with delay. Appl. Math. Comput. 208, 484494 (2009)

    MathSciNet  Google Scholar 

  26. Thieme, H., Zhao, X.: Asymptotic speed of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Differ. Equ. 195, 430–470 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Z.C., Li, W.-T., Ruan, S.: Travelling wave-fronts in reaction-diffusion systems with spatio-temporal delays. J. Differ. Equ. 222, 185–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  29. Wu, J., Zou, X.: Asymptotical and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations. J. Differ. Equ. 135, 315–357 (1997)

    Article  MATH  Google Scholar 

  30. Wu, S.-L., Liu, T.-T.: Exponential stability of traveling fronts for a 2D lattice delayed differential equation with global interaction. Electron. J. Differ. Equ. 179(13), 1–14 (2013)

  31. Yang, Y., So, J.W.-H.: Dynamics for the diffusive Nicholson’s blowflies equation. In: Chen, W., Hu, S. (eds.) Dynamical Systems and Differential Equations, vol. 11, pp. 333–352. Southwest Missouri State University, Springfield (1998)

    Google Scholar 

  32. Zinner, B.: Existence of traveling wavefront solutions for discrete Nagumo equation. J. Differ. Equ. 96, 1–27 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Cheng-Hsiung Hsu and Tzi-Sheng Yang have Partially supported by the Ministry of Science and Technology of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzi-Sheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, CH., Lin, JJ. & Yang, TS. Stability for Monostable Wave Fronts of Delayed Lattice Differential Equations. J Dyn Diff Equat 29, 323–342 (2017). https://doi.org/10.1007/s10884-015-9447-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9447-9

Keywords

Mathematics Subject Classification

Navigation