Skip to main content
Log in

Quasi-Periodic Solutions with Prescribed Frequency in Reversible Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we obtain a family of small-amplitude real analytic quasi-periodic solutions for a class of derivative nonlinear Schrödinger equations, subject to Dirichlet boundary conditions, which correspond to infinite-dimensional reversible systems with critical unbounded perturbations. We prove that the frequencies of the quasi-periodic solutions, accordingly, the tangential frequencies of the invariant tori for these reversible systems can be in a fixed direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced KdV (2012, preprint)

  2. Baldi, P., Berti, M., Montalto, R.: A note on KAM theory for quasi-linear and fully nonlinear KdV. Rend. Lincei Mat. Appl. 24, 437–450 (2013)

    MATH  MathSciNet  Google Scholar 

  3. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Annalen. doi:10.1007/s00208-013-1001-7

  4. Bambusi, D.: On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity 12, 823–850 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Commun. Math. Phys. 219, 465–480 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berti, M., Biasco, L.: Branching of Cantor manifolds of elliptic tori and applications to PDEs. Commun. Math. Phys. 305(3), 741–796 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berti, M., Biasco, L., Procesi, M.: Existence and stability of quasi-periodic solutions for derivative wave equations. Rend. Lincei Mat. Appl. 24, 199–214 (2013)

    MATH  MathSciNet  Google Scholar 

  8. Berti, M., Biasco, L., Procesi, M.: KAM for the Reversible Derivative Wave Equations. Arch. Rational Mech. Anal. 212, 905–955 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berti, M., Bolle, P.: Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134, 359–419 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Berti, M., Bolle, P.: Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25, 2579–2613 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \({\mathbb{T}}^d\) with a multiplicative potential. J. Eur. Math. Soc. 15, 229–286 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Berti, M., Corsi, L., Procesi, M.: An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds (2014, preprint)

  13. Berti, M., Procesi, M.: Nonlinear wave and Schrödinger equations on compact Lie groups and Homogeneous spaces. Duke Math. J. 159, 479–538 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bourgain, J.: On Melnikov’s persistency problem. Math. Res. Lett. 4, 445–458 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bourgain, J.: Nonlinear Schrödinger Equations, Park City Series 5. American Mathematical Society, Providence (1999)

  17. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies. Princeton University Press, Princeton (2005)

    Google Scholar 

  18. Bourgain, J., Wang, W.-M.: Quasi-periodic solutions of nonlinear random Schrödinger equations. J. Eur. Math. Soc. 10, 1–45 (2008)

  19. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46, 1409–1498 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Eliasson, L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Ann. Sc. Norm. Sup. Pisa. Cl. Sci. 15, 115–147 (1988)

    MATH  MathSciNet  Google Scholar 

  21. Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Geng, J., Ren, X.: Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation. J. Differ. Equ. 249, 2796–2821 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226, 5361–5402 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Geng, J., Yi, Y.: Quasi-periodic solutions in a nonlinear Schrödinger equation. J. Differ. Equ. 233, 512–542 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Geng, J., Yi, Y.: A KAM theorem for Hamiltonian networks with long ranged couplings. Nonlinearity 20, 1313–1342 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262, 343–372 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kappeler, T., Pöschel, J.: KdV & KAM. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  28. Kuksin, S.B.: Nearly Integrable Infinite Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, vol. 1556. Springer, Berlin (1993)

  29. Kuksin, S.B., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143, 149–179 (1996)

    Article  MATH  Google Scholar 

  30. Kuksin, S.B.: Analysis of Hamiltonian PDEs. Oxford University Press, Oxford (2000)

    Google Scholar 

  31. Liu, B.: On lower dimensional invariant tori in reversible systems. J. Differ. Equ. 176, 158–194 (2001)

    Article  MATH  Google Scholar 

  32. Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient. Commun. Pure Appl. Math. LXIII, 1145–1172 (2010)

    MathSciNet  Google Scholar 

  33. Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze-Serie 23, 119–148 (1996)

    MATH  Google Scholar 

  34. Ren, X.: Quasi-periodic solutions with prescribed frequency in a nonlinear Schrödinger equation. Sci. China Math. 53(12), 3067–3084 (2010)

  35. Ren, X.: Quasi-periodic solutions of 1D nonlinear Schrödinger equation with a multiplicative potential. Taiwan. J. Math. 17(6), 2191–2211 (2013)

    Article  MATH  Google Scholar 

  36. Ren, X., Geng, J.: Lower dimensional invariant tori with prescribed frequency for the nonlinear Schrödinger equation. Nonlinear Analysis: Theory, Methods & Applications 92, 30–46 (2013)

    Article  MathSciNet  Google Scholar 

  37. Sevryuk, M.B.: Reversible Systems. Lecture Notes in Mathematics, vol. 1211. Springer, Berlin (1986)

  38. Sevryuk, M.B.: Invariant m-dimensional tori of reversible systems with phase space of dimension greater than 2m. J. Soviet. Math. 51, 2374–2386 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sevryuk, M.B.: The finite-dimensional reversible KAM theory. Phys. D. 112, 132–147 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479–528 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24, 1189–1228 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Jiansheng Geng and Jian Wu for their invaluable discussions. The author also thanks the anonymous referees for useful comments on the paper. The author is supported by NSFC Grant 11126100 and the Youth Sci-Tech Innovation Fund, NAU Grant KJ2010025. The author is also partially supported by Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufang Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X. Quasi-Periodic Solutions with Prescribed Frequency in Reversible Systems. J Dyn Diff Equat 26, 493–515 (2014). https://doi.org/10.1007/s10884-014-9383-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9383-0

Keywords

Navigation