Skip to main content
Log in

Universal Nash Equilibrium Strategies for Differential Games

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

The paper is concerned with a two-player nonzero-sum differential game in the case when players are informed about the current position. We consider the game in control with guide strategies first proposed by Krasovskii and Subbotin. The construction of universal strategies is given both for the case of continuous and discontinuous value functions. The existence of a discontinuous value function is established. The continuous value function does not exist in the general case. In addition, we show the example of smooth value function not being a solution of the system of the Hamilton–Jacobi equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin J-P. Viability theory. Basel: Birkhaüser; 1992.

    Google Scholar 

  2. Averboukh Y. Infinitesimal characterization of a feedback Nash equilibrium in a differential game. Proc Steklov Inst Math Suppl. 2009;271:28–40.

    Article  Google Scholar 

  3. Averboukh Y. Nash equilibrium in differential games and the construction of the programmed iteration method. Sb Math. 2011;202:621–48.

    Article  MATH  MathSciNet  Google Scholar 

  4. Averboukh Yu. Characterization of feedback Nash equilibrium for differential games, Vol. 12. In: Cardaliaguet P, Cressman R, editors. Advances in dynamic game theory. Ann. Internat. Soc. Dynam. Games. Boston: Birkhaüser; 2013, pp. 109–25.

    Google Scholar 

  5. Başar T, Olsder GJ. Dynamic noncooperative game theory. Philadelphia: SIAM; 1999.

    MATH  Google Scholar 

  6. Bressan A, Shen W. Semi-cooperative strategies for differential games. Int J Game Theory 2004;32:561–59.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bressan A, Shen W. Small BV solutions of hyperbolic noncooperative differential games. SIAM J Control Optim 2004;43:194–215.

    Article  MATH  MathSciNet  Google Scholar 

  8. Buckdahn R, Cardaliaguet P, Quincampoix M. Some recent aspects of differential game theory. Dyn Games Appl 2011;1:74–114.

    Article  MATH  MathSciNet  Google Scholar 

  9. Cardaliaguet P. On the instability of the feedback equilibrium payoff in a nonzero-sum differential game on the line, Vol. 9. In: Jorgensen S, Quincampoix M, Vincent TL, editors. Advances in dynamic game theory. Ann. Internat. Soc. Dynam. Games. Boston: Birkhaüser; 2007, pp. 57–67.

    Chapter  Google Scholar 

  10. Cardaliaguet P, Plaskacz S. Existence and uniqueness of a Nash equilibrium feedback for a simple nonzero-sum differential game. Int J Game Theory 2003;32:33–71.

    Article  MATH  MathSciNet  Google Scholar 

  11. Case JH. Towards a theory of many players differential games. SIAM J Control 1969;7:179–97.

    Article  MATH  MathSciNet  Google Scholar 

  12. Chistyakov SV. On noncooperative differential games. Dokl Akad Nauk SSSR 1981;259: 1052–5 (in Russian).

    MathSciNet  Google Scholar 

  13. Friedman A. Differential games. New York: Wiley; 1971.

    MATH  Google Scholar 

  14. Kleimenov AF. Non zero-sum differential games. Ekaterinburg: Nauka; 1993. (in Russian).

    Google Scholar 

  15. Kononenko AF. On equilibrium positional strategies in nonantagonistic differential games. Dokl Akad Nauk SSSR 1976;231:285–8. (in Russian).

    MathSciNet  Google Scholar 

  16. Krasovskii AN, Krasovskii NN. Control under lack of information. Basel: Birkhäuser; 1995.

    Book  Google Scholar 

  17. Krasovskii NN, Subbotin AI. Game-theoretical control problems. New York: Springer; 1988.

    Book  MATH  Google Scholar 

  18. Rockafellar RT, Wets R. Variational analysis. New York: Springer; 2009.

    MATH  Google Scholar 

  19. Subbotina NN. Universal optimal strategies in positional differential games. Diff Uravneniya 1983;19:1890–6(in Russian).

    MathSciNet  Google Scholar 

  20. Subbotin AI. Generalized solutions of first-order PDEs. The dynamical perspective. Boston: Birkhaüser; 1995.

    Book  Google Scholar 

  21. Tolwinski B, Haurie A, Leitman G. Cooperate equilibria in differential games. J Math Anal Appl 1986;112:182–92.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by RFBR (grant nos. 12-01-00537) and Presidium of RAS (program ‘Mathematical Control Theory’, project UrB RAS N12-P-1-1019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii Averboukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averboukh, Y. Universal Nash Equilibrium Strategies for Differential Games. J Dyn Control Syst 21, 329–350 (2015). https://doi.org/10.1007/s10883-014-9224-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-014-9224-9

Keywords

Mathematics Subject Classifications (2010)

Navigation