Skip to main content

Advertisement

Log in

Heart period and blood pressure characteristics in splanchnic arterial occlusion shock-induced collapse

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

The nature of hemodynamic instability typical of circulatory shock is not well understood, but an improved interpretation of its dynamic features could help in the management of critically ill patients. The objective of this work was to introduce new metrics for the analysis of arterial blood pressure (ABP) in order to characterize the risk of catastrophic outcome in splanchnic arterial occlusion (SAO) shock. Continuous ABP (fs = 1 kHz) was measured in rats during experimental SAO shock, which induced a fatal pressure drop (FPD) in ABP. The FPD could either be slow (SFPD) or fast (FFPD), with the latter causing cardiovascular collapse. Time series of mean arterial pressure, systolic blood pressure and heart period were derived from ABP. The sample asymmetry-based algorithm Heart Rate Characteristics was adapted to compute the Heart Period Characteristics (HPC) and the Blood Pressure Characteristics (BPC). Baroreflex sensitivity (BRS) was assessed by means of a bivariate model. The approach to FPD of the animals who collapsed (FFPD) was characterized by higher BRS in the low frequency band versus SFPD animals (0.36 ± 0.15 vs. 0.19 ± 0.12 ms/mmHg, p value = 0.0196), bradycardia as indicated by the HPC (0.76 ± 0.57 vs. 1.94 ± 1.27, p value = 0.0179) and higher but unstable blood pressure as indicated by BPC (3.02 ± 2.87 vs. 1.47 ± 1.29, p value = 0.0773). The HPC and BPC indices demonstrated promise as potential clinical markers of hemodynamic instability and impending cardiovascular collapse, and this animal study suggests their test in data from intensive care patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  2. Rivers EP, Katranji M, Jaehne KA, Brown S, Dagher GA, Cannon C, Coba V. Early interventions in severe sepsis and septic shock: a review of the evidence one decade later. Minerva Anestesiol. 2012;78(6):712–24.

    CAS  PubMed  Google Scholar 

  3. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213:220–2.

    Article  CAS  PubMed  Google Scholar 

  4. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol. 1985;249:H867–75.

    CAS  PubMed  Google Scholar 

  5. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59:178–93.

    Article  CAS  PubMed  Google Scholar 

  6. Saul JP, Berger RD, Chen MH, Cohen RJ. Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia. Am J Physiol Heart Circ Physiol. 1989;256:H153–61.

    CAS  Google Scholar 

  7. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardio-vascular regulation. Am J Physiol Heart Circ Physiol. 1991;261:H1231–45.

    CAS  Google Scholar 

  8. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:1482–92.

    Article  Google Scholar 

  9. Malliani A, Pagani M, Montano N, Mela GS. Sympathovagal balance: a reappraisal. Circulation. 1998;98:2640–3.

    Article  CAS  PubMed  Google Scholar 

  10. Kovatchev BP, Farhy LS, Cao H, Griffin MP, Lake DE, Moorman JR. Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and systemic inflammatory response syndrome. Pediatr Res. 2003;54(6):892–8.

    Article  PubMed  Google Scholar 

  11. Moorman JR, Lake DG, Griffin MP. Heart rate characteristics monitoring for neonatal sepsis. IEEE Trans Biomed Eng. 2006;53:126–32.

    Article  PubMed  Google Scholar 

  12. Fairchild KD, Schelonka RL, Kaufman DA, Carlo WA, Kattwinkel J, Porcelli PJ, Navarrete CT, Bancalari E, Aschner JL, Walker MW, Perez JA, Palmer C, Lake DE, O’Shea TM, Moorman JR. Septicemia mortality reduction in neonates in a heart rate characteristics monitoring trial. Pediatr Res. 2013;74(5):570–5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lake DE, Fairchild KD, Moorman JR. Complex signals bioinformatics: evaluation of heart rate characteristics monitoring as a novel risk marker for neonatal sepsis. J Clin Monit Comput. 2014;28(4):329–39.

    Article  PubMed  Google Scholar 

  14. Kistler EB, Lefer AM, Hugli TE, Schmid-Schönbein GW. Plasma activation during splanchnic arterial occlusion shock. Shock. 2000;14(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  15. Ishimaru K, Mitsuoka H, Unno N, Inuzuka K, Nakamura S, Schmid-Schönbein GW. Pancreatic proteases and inflammatory mediators in peritoneal fluid during splanchnic arterial occlusion and reperfusion. Shock. 2004;22:467–71.

    Article  CAS  PubMed  Google Scholar 

  16. Kozar RA, Holcomb JB, Hassoun HT, Macaitis J, DeSoignie R, Moore FA. Superior mesenteric artery occlusion models shock-induced gut ischemia-reperfusion. J Surg Res. 2004;116(1):145–50.

    Article  PubMed  Google Scholar 

  17. Penn AH, Schmid-Schönbein GW. Severe intestinal ischemia can trigger cardiovascular collapse and sudden death via a parasympathetic mechanism. Shock. 2011;36:251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bathia V, Rarick KR, Stauss HM. Effect of the data sampling rate on accuracy of indices for heart rate and blood pressure variability and baroreflex function in resting rats and mice. Physiol Meas. 2010;31:1185–201.

    Article  Google Scholar 

  19. Japundzic N, Grichois ML, Zitoun P, Laude D, Elghozi JL. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton Nerv Syst. 1990;30:91–100.

    Article  CAS  PubMed  Google Scholar 

  20. Cerutti C, Gustin MP, Paultre CZ, Lo M, Julien C, Vincent M, Sassard J. Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach. Am J Physiol Heart Circ Physiol. 1991;261:H1292–9.

    CAS  Google Scholar 

  21. Julien C, Zhang ZQ, Cerutti C, Barrés C. Hemodynamic analysis of arterial pressure oscillations in conscious rats. J Auton Nerv Syst. 1995;50:239–52.

    Article  CAS  PubMed  Google Scholar 

  22. Chang M, Alsaigh T, Kistler EB, Schmid-Schönbein GW. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine. PLoS ONE. 2012;7(6):e40087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wyller VB, Barbieri R, Saul PJ. Blood pressure variability and closed-loop baroreflex assessment in adolescent chronic fatigue syndrome during supine rest and orthostatic stress. Eur J Appl Phys. 2011;111(3):497–507.

    Article  Google Scholar 

  24. Dorantes Mendez G, Aletti F, Toschi N, Canichella A, Dauri M, Coniglione F, Guerrisi M, Signorini MG, Cerutti S, Ferrario M. Baroreflex sensitivity variations in response to propofol anesthesia: comparison between normotensive and hypertensive patients. J Clin Monit Comput. 2013;27(4):417–26.

    Article  PubMed  Google Scholar 

  25. Antonaccio MJ, Robson RD, Kerwin L. Evidence for increased vagal tone and enhancement of baroreceptor reflex activity after xylazine (2-(2,6-dimethylphenylamino)-4-H-5,6-dihydro-1,3-thiazine) in anesthestized dogs. Eur J Pharmacol. 1973;23:311–6.

    Article  CAS  PubMed  Google Scholar 

  26. Klide AM, Calderwood HW, Soma LR. Cardiopulmonary effects of xylazine in dogs. Am J Vet Res. 1975;36(7):931–5.

    CAS  PubMed  Google Scholar 

  27. Sanford TD, Colby ED. Effect of xylazine and ketamine on blood pressure, heart rate and respiratory rate in rabbits. Lab Anim Sci. 1980;30(3):519–23.

    CAS  PubMed  Google Scholar 

  28. Hsu WH, Lu ZX, Hembrough FB. Effect of xylazine on heart rate and arterial blood pressure in conscious dogs, as influenced by atropine, 4-aminopyridine, doxapram, and yohimbine. J Am Vet Med Assoc. 1985;186:153–6.

    CAS  PubMed  Google Scholar 

  29. Paddleford RR, Harvey RC. Alpha 2 agonists and antagonists. Vet Clin N Am Small Anim Pract. 1999;29:737–45.

    Article  CAS  Google Scholar 

  30. Fujita S, Donovan CM. Celiac-superior mesenteric ganglionectomy, but not vagotomy, suppresses the sympathoadrenal response to insulin-induced hypoglycemia. Diabetes. 2005;54:3258–64.

    Article  CAS  PubMed  Google Scholar 

  31. Thorens B. Glucose sensing and the pathogenesis of obesity and type 2 diabetes. Int J Obes (Lond). 2008;6:S62–71.

    Article  Google Scholar 

  32. Longhurst JC, Rotto DM, Kaufman MP, Stahl GL. Ischemically sensitive abdominal visceral afferents: response to cyclooxygenase blockade. Am J Physiol. 1991;261(6):H2075–81.

    CAS  PubMed  Google Scholar 

  33. van de Vooren H, Gademan MG, Swenne CA, TenVoorde BJ, Schalij MJ, Van der Wall EE. Baroreflex sensitivity, blood pressure buffering, and resonance: what are the links? Computer simulation of healthy subjects and heart failure patients. J Appl Physiol. 2007;102(4):1348–56.

    Article  PubMed  Google Scholar 

  34. Su DF, Miao CY. Arterial baroreflex function in conscious rats. Acta Pharmacol Sin. 2002;23:673–9.

    CAS  PubMed  Google Scholar 

  35. Yoshino K, Hayawaka M, Niki E, Matsuoka K. Closed-loop analysis of cardiovascular variability in rats under restraint stress. Auton Neurosci. 2005;119:61–6.

    Article  PubMed  Google Scholar 

  36. Valenza G, Akeju O, Pavone KJ, Citi L, Hartnack KE, Sampson A, Purdon PL, Brown EN, Barbieri R. Instantaneous monitoring of heart beat dynamics during anesthesia and sedation. J Comput Surg. 2014;1:13.

    Article  Google Scholar 

  37. Chen Z, Purdon PL, Harrell G, Pierce ET, Walsh J, Brown EN, Barbieri R. Dynamic assessment of baroreflex control of heart rate during induction of propofol anesthesia using a point process method. Ann Biomed Eng. 2011;39(1):260–76.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the “ShockOmics” Grant #602706 of the European Union, by the “CelSys Shock” Marie Curie International Outgoing Fellowship PIOF-GA-2012-328796 of the European Union in support of the corresponding author, and by National Institutes of Health Grants HL 67825 and GM85072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Aletti.

Ethics declarations

Conflict of interest

Geert W. Schmid-Schönbein owns stock in Inflammagen Inc., a company that develops new shock treatments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aletti, F., Gambarotta, N., Penn, A.H. et al. Heart period and blood pressure characteristics in splanchnic arterial occlusion shock-induced collapse. J Clin Monit Comput 31, 167–175 (2017). https://doi.org/10.1007/s10877-015-9813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-015-9813-5

Keywords

Navigation