Skip to main content

Advertisement

Log in

Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

A hand-elevation study was carried out in the laboratory in order to alter peripheral blood flow with the aim of increasing understanding of factors affecting the morphology of peripheral photoplethysmographic signals. Photoplethysmographic (PPG) signals were recorded from twenty healthy volunteer subjects during a hand-elevation study in which the right hand was raised and lowered relative to heart level, while the left hand remained static. Red and infrared (IR) PPG signals were obtained from the right and left index fingers using a custom-made PPG processing system. PPG features were identified using a feature-detection algorithm based on the first derivative of the PPG signal. The systolic PPG amplitude, the reflection index, crest time, pulse width at half height, and delta T were calculated from 20 s IR PPG signals from three positions of the right hand with respect to heart level (−50, 0, +50 cm) in 19 volunteers. PPG features were found to change with hand elevation. On lowering the hand to 50 cm below heart level, ac systolic PPG amplitudes from the finger decreased by 68.32 %, while raising the arm increased the systolic amplitude by 69.99 %. These changes in amplitude were attributed to changes in hydrostatic pressure and the veno-arterial reflex. Other morphological variables, such as crest time, were found to be statistically significantly different across hand positions, indicating increased vascular resistance on arm elevation than on dependency. It was hypothesized that these morphological PPG changes were influenced by changes in downstream venous resistance, rather than arterial, or arteriolar, resistance. Changes in hand position relative to heart level can significantly affect the morphology of the peripheral ac PPG waveform. These alterations are due to a combination of physical effects and physiological responses to changes in hand position, which alter vascular resistance. Care should be taken when interpreting morphological data derived from PPG signals and methods should be standardized to take these effects into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28:R1–39.

    Article  PubMed  Google Scholar 

  2. Kyriacou PA. Direct pulse oximetry within the esophagus, on the surface of abdominal viscera, and on free flaps. Anesth Analg. 2013;117:824–33.

    Article  PubMed  Google Scholar 

  3. Selvaraj N, Jaryal AK, Santhosh J, Anand S, Deepak KK. Monitoring of reactive hyperemia using photoplethysmographic pulse amplitude and transit time. J Clin Monit Comput. 2009;23(5):315–22.

    Article  PubMed  Google Scholar 

  4. Meredith DJ, Clifton D, Charlton P, Brooks J, Pugh CW, Tarassenko L. Photoplethysmographic derivation of respiratory rate: a review of relevant physiology. J Med Eng Technol. 2012;36(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  5. Reisner A, Shaltis PA, McCombie D, Asada HH. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology. 2008;108:950–8.

    Article  PubMed  Google Scholar 

  6. Chan GS, Fazalbhoy A, Birznieks I, Macefield VG, Middleton PM, Lovell NH. Spontaneous fluctuations in the peripheral photoplethysmographic waveform: roles of arterial pressure and muscle sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2012;302(3):H826–36.

    Article  CAS  PubMed  Google Scholar 

  7. Angius G, Barcellona D, Cauli E, Meloni L, Raffo L. Myocardial infarction and antiphospholipid syndrome: a first study on finger PPG waveforms effects. Comput Cardiol. 2012;39:517–20.

    Google Scholar 

  8. Millasseau SC, Rittera JM, Takazawab K, Chowienczyk PJ. Contour analysis of the photoplethysmographic pulse measured at the finger. J Hypertens. 2006;24:1449–56.

    Article  CAS  PubMed  Google Scholar 

  9. Alty SR, Angarita-Jaimes N, Millasseau SC, Chowienczyk PJ. Predicting arterial stiffness from the digital volume pulse waveform. IEEE Trans Biomed Eng. 2007;54:2268–75.

    Article  PubMed  Google Scholar 

  10. Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rev. 2012;8:14–25.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Budidha K, Kyriacou PA. The human ear canal: investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation. Physiol Meas. 2014;35(2):111–28.

    Article  CAS  PubMed  Google Scholar 

  12. McEniery CM, Yasmin PHD, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2005;46(9):1753–60.

    Article  PubMed  Google Scholar 

  13. Rubins U, Grabovskis A, Grube J, Kukulis I. Photoplethysmography analysis of artery properties in patients with cardiovascular diseases. IFMBE Proc. 2008;20:319–22.

    Article  Google Scholar 

  14. Yousef Q, Reaz MBI, Ali MAM. The analysis of PPG morphology: investigating the effects of aging on arterial compliance. Meas Sci Rev. 2012;12:266–71.

    Article  Google Scholar 

  15. Lee QY, Chan GS, Redmond SJ, Middleton PM, Steel E, Malouf P, Critoph C, Flynn G, O’Lone E, Lovell NH. Multivariate classification of systemic vascular resistance using photoplethysmography. Physiol Meas. 2011;32:1117–32.

    Article  CAS  PubMed  Google Scholar 

  16. Awad AA, Haddadin AS, Tantawy H, Badr TM, Stout RG, Silverman DG, Shelley KH. The relationship between the photoplethysmographic waveform and systemic vascular resistance. J Clin Monit Comput. 2007;21:365–72.

    Article  PubMed  Google Scholar 

  17. Millasseau SC, Guigui FG, Kelly RP, Prasad K, Cockcroft JR, Ritter JM, Chowienczyk PJ. Noninvasive assessment of the digital volume pulse: comparison with the peripheral pressure pulse. Hypertension. 2000;36:952–6.

    Article  CAS  PubMed  Google Scholar 

  18. Chowienczyk PJ, Kelly RP, MacCallum H, Millasseau SC, Andersson TL, Gosling RG, Ritter JM, Anggard EE. Photoplethysmographic assessment of pulse wave reflection: blunted response to endothelium-dependent beta2-adrenergic vasodilation in type II diabetes mellitus. J Am Coll Cardiol. 1999;34:2007–14.

    Article  CAS  PubMed  Google Scholar 

  19. Gu WB, Poon CCY, Zhang YT. A novel parameter from PPG dicrotic notch for estimation of systolic blood pressure using pulse transit time. In Medical Devices and Biosensors. 5th International Summer School and Symposium on. IEEE, 2008. p. 86–8.

  20. Allen J, Murray A, Di Maria C, Newton JL. Chronic fatigue syndrome and impaired peripheral pulse characteristics on orthostasis—a new potential diagnostic biomarker. Physiol Meas. 2012;33(2):231–41.

    Article  PubMed  Google Scholar 

  21. Shelley KH. Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesth Analg. 2007;105:S31–6.

    Article  PubMed  Google Scholar 

  22. Wilkins RW, Halperin MH, Litter J. The effect of the dependent position upon blood flow in the limbs. Circulation. 1950;2:373–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kammila S, Campbell NRC, Brant R, deJong R, Culleton B. Systematic error in the determination of nocturnal blood pressure dipping status by ambulatory blood pressure monitoring. Blood Press Monit. 2002;7:131–4.

    Article  PubMed  Google Scholar 

  24. Gavish B, Gavish L. Blood pressure variation in response to changing arm cuff height cannot be explained solely by the hydrostatic effect. J Hypertens. 2011;29:2099–104.

    Article  CAS  PubMed  Google Scholar 

  25. Beaconsfield P, Ginsburg J. Effect of changes in limb posture on peripheral blood flow. Circ Res. 1955;3:478–82.

    Article  CAS  PubMed  Google Scholar 

  26. Darmanin G, Jaggard M, Hettiaratchy S, Nanchahal J, Jain A. Evaluating optimal superficial limb perfusion at different angles using non-invasive micro-lightguide spectrophotometry. J Plast Reconstr Aesthet Surg. 2013;66:821–6.

    Article  PubMed  Google Scholar 

  27. Almond NE, Jones DP, Cooke ED. Noninvasive measurement of the human peripheral circulation: relationship between laser Doppler flowmeter and photoplethysmograph signals from the finger. Angiology. 1988;39:819–29.

    Article  CAS  PubMed  Google Scholar 

  28. Xin S, Hu S, Crabtree VP, Zheng J, Azorin-Peris V, Echiadis A, Smith PR. Investigation of blood pulse PPG signal regulation on toe effect of body posture and lower limb height. J Zhejiang Univ Sci A. 2007;8:916–20.

    Article  Google Scholar 

  29. Hickey M, Phillips JP, Kyriacou PA. The effect of vascular changes on the photoplethysmographic signal at different hand elevations. Physiol Meas. 2015;36(3):425–40.

    Article  CAS  PubMed  Google Scholar 

  30. Rybynok V, May JM, Budidha K, Kyriacou PA. Design and development of a novel multi-channel photoplethysmographic research system. In: Proceedings of IEEE Point-of-Care Healthcare Technologies. 2013. p. 267–70.

  31. Bahadir Z, Tisdell E, Arce Esquivel AA, Dobrosielski DA, Welsch MA. Influence of venous emptying on the reactive hyperemic blood flow response. Dyn Med. 2007;6:3.

    Article  Google Scholar 

  32. Gamble G, Zorn J, Sanders G, MacMahon S, Sharpe N. Estimation of arterial stiffness, compliance and distensibility from M-mode ultrasound measurements of the common carotid artery. Stroke. 1994;25:11–6.

    Article  CAS  PubMed  Google Scholar 

  33. Chen HC, Patel V, Wiek J, Rassam SM, Kohner EM. Vessel diameter changes during the cardiac cycle. Eye. 1994;8:97–103.

    Article  PubMed  Google Scholar 

  34. Wang A, Yang L, Liu C, Cui J, Li Y, Yang X, Zhang S, Zheng D. Athletic differences in the characteristics of the photoplethysmographic pulse shape: effect of maximal oxygen uptake and maximal muscular voluntary contraction. Biomed Res Int. 2015;. doi:10.1155/2015/752570.

    Google Scholar 

  35. Burkert A, Scholze A, Tepel M. Noninvasive continuous monitoring of digital pulse waves during hemodialysis. ASAIO J. 2006;52(2):174–9.

    Article  PubMed  Google Scholar 

  36. Hildebrandt W, Herrmann J, Stegemann J. Fluid balance versus blood flow autoregulation in the elevated human limb: the role of venous collapse. Eur J Appl Physiol Occup Physiol. 1994;69:127–31.

    Article  CAS  PubMed  Google Scholar 

  37. Midttun M, Sejrsen P. Blood flow rate in arteriovenous anastomoses and capillaries in thumb, first toe, ear lobe, and nose. Clin Physiol. 1996;6:275–89.

    Article  Google Scholar 

  38. Zuther JE. Lymphedema management: the comprehensive guide for practitioners. 3rd ed. Stuttgart: Thieme; 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Hickey.

Ethics declarations

Conflict of interest

Dr. M Hickey, Dr. JP Phillips and Prof PA Kyriacou have have no conflicts of interest or financial ties to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickey, M., Phillips, J.P. & Kyriacou, P.A. Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study. J Clin Monit Comput 30, 727–736 (2016). https://doi.org/10.1007/s10877-015-9761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-015-9761-0

Keywords

Navigation