Skip to main content

Advertisement

Log in

Near-infrared spectroscopy determined cerebral oxygenation with eliminated skin blood flow in young males

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

We estimated cerebral oxygenation during handgrip exercise and a cognitive task using an algorithm that eliminates the influence of skin blood flow (SkBF) on the near-infrared spectroscopy (NIRS) signal. The algorithm involves a subtraction method to develop a correction factor for each subject. For twelve male volunteers (age 21 ± 1 yrs) +80 mmHg pressure was applied over the left temporal artery for 30 s by a custom-made headband cuff to calculate an individual correction factor. From the NIRS-determined ipsilateral cerebral oxyhemoglobin concentration (O2Hb) at two source-detector distances (15 and 30 mm) with the algorithm using the individual correction factor, we expressed cerebral oxygenation without influence from scalp and scull blood flow. Validity of the estimated cerebral oxygenation was verified during cerebral neural activation (handgrip exercise and cognitive task). With the use of both source-detector distances, handgrip exercise and a cognitive task increased O2Hb (P < 0.01) but O2Hb was reduced when SkBF became eliminated by pressure on the temporal artery for 5 s. However, when the estimation of cerebral oxygenation was based on the algorithm developed when pressure was applied to the temporal artery, estimated O2Hb was not affected by elimination of SkBF during handgrip exercise (P = 0.666) or the cognitive task (P = 0.105). These findings suggest that the algorithm with the individual correction factor allows for evaluation of changes in an accurate cerebral oxygenation without influence of extracranial blood flow by NIRS applied to the forehead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Herrmann MJ, Walter A, Ehlis AC, Fallgatter AJ. Cerebral oxygenation changes in the prefrontal cortex: effects of age and gender. Neurobiol Aging. 2006;27(6):888–94.

    Article  CAS  PubMed  Google Scholar 

  2. Kameyama M, Fukuda M, Uehara T, Mikuni M. Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study. NeuroImage. 2004;22(4):1715–21.

    Article  PubMed  Google Scholar 

  3. Bhambhani Y, Malik R, Mookerjee S. Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respir Physiol Neurobiol. 2007;156(2):196–202.

    Article  PubMed  Google Scholar 

  4. Ide K, Horn A, Secher NH. Cerebral metabolic response to submaximal exercise. J Appl Physiol. 1999;87(5):1604–8.

    CAS  PubMed  Google Scholar 

  5. Lucas SJ, Ainslie PN, Murrell CJ, Thomas KN, Franz EA, Cotter JD. Effect of age on exercise-induced alterations in cognitive executive function: relationship to cerebral perfusion. Exp Gerontol. 2012;47(8):541–51.

    Article  PubMed  Google Scholar 

  6. Marshall HC, Hamlin MJ, Hellemans J, Murrell C, Beattie N, Hellemans I, Perry T, Burns A, Ainslie PN. Effects of intermittent hypoxia on SaO(2), cerebral and muscle oxygenation during maximal exercise in athletes with exercise-induced hypoxemia. Eur J Appl Physiol. 2008;104(2):383–93.

    Article  CAS  PubMed  Google Scholar 

  7. Peltonen JE, Paterson DH, Shoemaker JK, Delorey DS, Dumanoir GR, Petrella RJ, Kowalchuk JM. Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise. Respir Physiol Neurobiol. 2009;169(1):24–35.

    Article  PubMed  Google Scholar 

  8. Subudhi AW, Miramon BR, Granger ME, Roach RC. Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. J Appl Physiol. 2009;106(4):1153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murkin JM, Adams SJ, Novick RJ, Quantz M, Bainbridge D, Iglesias I, Cleland A, Schaefer B, Irwin B, Fox S. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104(1):51–8.

    Article  PubMed  Google Scholar 

  10. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM 3rd, Rodriguez AL, Magovern CJ, Zaubler T, Freundlich K, Parr GV. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009; 87(1):36–44 (discussion 44–35).

  11. Scheeren TW, Schober P, Schwarte LA. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J Clin Monit Comput. 2012;26(4):279–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Denault A, Deschamps A, Murkin JM. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth. 2007;11(4):274–81.

    PubMed  Google Scholar 

  13. Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264–7.

    Article  PubMed  Google Scholar 

  14. Davie SN, Grocott HP. Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology. 2012;116(4):834–40.

    Article  CAS  PubMed  Google Scholar 

  15. Sørensen H, Secher NH, Siebenmann C, Nielsen HB, Kohl-Bareis M, Lundby C, Rasmussen P. Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine. Anesthesiology. 2012;117(2):263–70.

    Article  PubMed  Google Scholar 

  16. Ogoh S, Sato K, Fisher JP, Seifert T, Overgaard M, Secher NH. The effect of phenylephrine on arterial and venous cerebral blood flow in healthy subjects. Clin Physiol Funct Imaging. 2011;31(6):445–51.

    Article  CAS  PubMed  Google Scholar 

  17. Ogoh S, Sato K, Okazaki K, Miyamoto T, Secher F, Sørensen H, Rasmussen P, Secher NH. A decrease in spatially resolved near-infrared spectroscopy-determined frontal lobe tissue oxygenation by phenylephrine reflects reduced skin blood flow. Anesth Analg. 2014;118(4):823–9.

    Article  CAS  PubMed  Google Scholar 

  18. Saager RB, Berger AJ. Direct characterization and removal of interfering absorption trends in two-layer turbid media. J Opt Soc Am A Opt Image Sci Vis. 2005;22(9):1874–82.

    Article  PubMed  Google Scholar 

  19. Saager RB, Telleri NL, Berger AJ. Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS. NeuroImage. 2011;55(4):1679–85.

    Article  PubMed  Google Scholar 

  20. Gagnon L, Perdue K, Greve DN, Goldenholz D, Kaskhedikar G, Boas DA. Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling. NeuroImage. 2011;56(3):1362–71.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luu S, Chau T. Decoding subjective preference from single-trial near-infrared spectroscopy signals. J Neural Eng. 2009;6(1):016003.

    Article  PubMed  Google Scholar 

  22. Toronov V, Webb A, Choi JH, Wolf M, Safonova L, Wolf U, Gratton E. Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging. Opt Express. 2001;9(8):417–27.

    Article  CAS  PubMed  Google Scholar 

  23. Hirasawa A, Yanagisawa S, Tanaka N, Funane T, Kiguchi M, Sørensen H, Secher NH, Ogoh S. Influence of skin blood flow and source-detector distance on near-infrared spectroscopy-determined cerebral oxygenation in humans. Clin Physiol Funct Imaging. 2014;35(3):237–44.

  24. Germon TJ, Evans PD, Barnett NJ, Wall P, Manara AR, Nelson RJ. Cerebral near infrared spectroscopy: emitter-detector separation must be increased. Br J Anaesth. 1999;82(6):831–7.

    Article  CAS  PubMed  Google Scholar 

  25. Sørensen H, Rasmussen P, Sato K, Persson S, Olesen ND, Nielsen HB, Olsen NV, Ogoh S, Secher NH. External carotid artery flow maintains near infrared spectroscopy-determined frontal lobe oxygenation during ephedrine administration. Br J Anaesth. 2014;113(3):452–8.

  26. Virtanen J, Noponen T, Merilainen P. Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals. J Biomed Opt. 2009;14(5):054032.

    Article  PubMed  Google Scholar 

  27. Zhang Y, Brooks DH, Franceschini MA, Boas DA. Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging. J Biomed Opt. 2005;10(1):11014.

    Article  PubMed  Google Scholar 

  28. Patel S, Katura T, Maki A, Tachtsidis I. Quantification of systemic interference in optical topography data during frontal lobe and motor cortex activation: an independent component analysis. Adv Exp Med Biol. 2011;701:45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Markham J, White BR, Zeff BW, Culver JP. Blind identification of evoked human brain activity with independent component analysis of optical data. Hum Brain Mapp. 2009;30(8):2382–92.

    Article  PubMed  Google Scholar 

  30. Kohno S, Miyai I, Seiyama A, Oda I, Ishikawa A, Tsuneishi S, Amita T, Shimizu K. Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis. J Biomed Opt. 2007;12(6):062111.

    Article  PubMed  Google Scholar 

  31. Katura T, Sato H, Fuchino Y, Yoshida T, Atsumori H, Kiguchi M, Maki A, Abe M, Tanaka N. Extracting task-related activation components from optical topography measurement using independent components analysis. J Biomed Opt. 2008;13(5):054008.

    Article  PubMed  Google Scholar 

  32. Akgul CB, Akin A, Sankur B. Extraction of cognitive activity-related waveforms from functional near-infrared spectroscopy signals. Med Biol Eng Comput. 2006;44(11):945–58.

    Article  PubMed  Google Scholar 

  33. Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol. 1988;33(12):1433–42.

    Article  CAS  PubMed  Google Scholar 

  34. Maki A, Yamashita Y, Ito Y, Watanabe E, Mayanagi Y, Koizumi H. Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Med Phys. 1995;22(12):1997–2005.

    Article  CAS  PubMed  Google Scholar 

  35. Suto T, Fukuda M, Ito M, Uehara T, Mikuni M. Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol Psychiatry. 2004;55(5):501–11.

    Article  PubMed  Google Scholar 

  36. Miyazawa T, Horiuchi M, Ichikawa D, Sato K, Tanaka N, Bailey DM, Ogoh S. Kinetics of exercise-induced neural activation; interpretive dilemma of altered cerebral perfusion. Exp Physiol. 2012;97(2):219–27.

    Article  CAS  PubMed  Google Scholar 

  37. Meng L, Gelb AW, Alexander BS, Cerussi AE, Tromberg BJ, Yu Z, Mantulin WW. Impact of phenylephrine administration on cerebral tissue oxygen saturation and blood volume is modulated by carbon dioxide in anaesthetized patients. Br J Anaesth. 2012;108(5):815–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Umeyama S, Yamada T. Monte Carlo study of global interference cancellation by multidistance measurement of near-infrared spectroscopy. J Biomed Opt. 2009;14(6):064025.

    Article  PubMed  Google Scholar 

  39. Yamada T, Umeyama S, Matsuda K. Multidistance probe arrangement to eliminate artifacts in functional near-infrared spectroscopy. J Biomed Opt. 2009;14(6):064034.

    Article  PubMed  Google Scholar 

  40. Kohri S, Hoshi Y, Tamura M, Kato C, Kuge Y, Tamaki N. Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study. Physiol Meas. 2002;23(2):301–12.

    Article  PubMed  Google Scholar 

  41. Silke B, McAuley D. Accuracy and precision of blood pressure determination with the Finapres: an overview using re-sampling statistics. J Human Hypertens. 1998;12(6):403–9.

    Article  CAS  Google Scholar 

  42. Dorlas JC, Nijboer JA, Butijn WT, van der Hoeven GM, Settels JJ, Wesseling KH. Effects of peripheral vasoconstriction on the blood pressure in the finger, measured continuously by a new noninvasive method (the Finapres). Anesthesiology. 1985;62(3):342–5.

    Article  CAS  PubMed  Google Scholar 

  43. Friedman DB, Jensen FB, Matzen S, Secher NH. Non-invasive blood pressure monitoring during head-up tilt using the Penaz principle. Acta Anaesth Scand. 1990;34(7):519–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The time and effort expended by all the volunteer subjects are greatly appreciated. This present study was supported in part by Grant-in-Aid for Scientific-Research (B) 24300237, Grant-in-Aid for Exploratory Research 25560299 (to S. Ogoh) and Enryo Inoue memory research Grant by Toyo University (to A. Hirasawa).

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehiko Ogoh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirasawa, A., Kaneko, T., Tanaka, N. et al. Near-infrared spectroscopy determined cerebral oxygenation with eliminated skin blood flow in young males. J Clin Monit Comput 30, 243–250 (2016). https://doi.org/10.1007/s10877-015-9709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-015-9709-4

Keywords

Navigation