Skip to main content

Advertisement

Log in

Can short-term heart rate variability be used to monitor fentanyl–midazolam induced changes in ANS preceding respiratory depression?

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Opioids have an occasional but high-risk side effect of respiratory depression. The detection of critical respiratory depression usually occurs after the event. Earlier detection would be beneficial in preventing increased morbidity and mortality of 0.01 % patients receiving analgesic opioids. Airway patency during inspiration requires vagal modulation. Regulation of the cardiovascular and respiratory centres may be coupled with a central mechanism that is indirectly measurable with heart rate variability (HRV). While opioids tend to increase parasympathetic tone, a decrease in airway stability could be due to a decrease in respiratory parasympathetic activity. Sympathetic arousal generated by apneic events may separately be recognised with short-term HRV. This pilot observational study examined the dynamic sympathovagal changes during fentanyl–midazolam induced respiratory depression on 10 subjects scheduled for minor surgery. A selection of HRV indices, able to work over sub-minute periods on non-stationary signals, were applied including a range of less common indices. Three analyses tested the effects: post-fentanyl, preceding the first central depression, and preceding obstruction of the upper airway. Statistical significance was assessed with overlap of bootstrap percentile confidence intervals for the median. A decrease in total variability, Lomb Total using the Lomb–Scargle method, is a positive finding for short-term HRV use in this study. No significant change before critical respiratory events was observed in traditional, spectral power, respiratory or other indices. One index, PolVar20, indicated a burst of sympathetic activity preceding respiratory depression similar to sleep apnoea arousals that restore airway patency. Before its usefulness in early detection of airway tone can be determined, PolVar20 requires further work: a statistical method for highly skewed distributions, auto adjustment for baseline variability, and detecting a range of sympathetic responses to apnea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ko S, Goldstein DH, VanDenKerkhof EG. Definitions of “respiratory depression” with intrathecal morphine postoperative analgesia: a review of the literature. Can J Anaesth. 2003;50(7):679–88.

    Article  PubMed  Google Scholar 

  2. Duarte LT, Fernandes Mdo C, Costa VV, Saraiva RA. The incidence of postoperative respiratory depression in patients undergoing intravenous or epidural analgesia with opioids. Rev Bras Anestesiol. 2009;59(4):409–20.

    Article  CAS  PubMed  Google Scholar 

  3. Fukuda K. Opioids. In: Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller’s anesthesia, vol 1, 7th ed. Philadelphia: Elsevier Churchill Livingstone; 2009. p. 769–824.

  4. Kuna ST. Inhibition of inspiratory upper airway motoneuron activity by phasic volume feedback. J Appl Physiol. 1986;60(4):1373–9.

    CAS  PubMed  Google Scholar 

  5. Malhotra A, White DP. Obstructive sleep apnoea. Lancet. 2002;360(9328):237–45. doi:10.1016/S0140-6736(02)09464-3.

    Article  PubMed  Google Scholar 

  6. Paton JF, Nolan PJ. Similarities in reflex control of laryngeal and cardiac vagal motor neurones. Respir Physiol. 2000;119(2–3):101–11.

    Article  CAS  PubMed  Google Scholar 

  7. Donchin Y, Feld JM, Porges SW. Respiratory sinus arrhythmia during recovery from isoflurane-nitrous oxide anesthesia. Anesth Analg. 1985;64(8):811–5.

    Article  CAS  PubMed  Google Scholar 

  8. Pomfrett CJ. Heart rate variability, BIS and ‘depth of anaesthesia’. Br J Anaesth. 1999;82(5):659–62.

    Article  CAS  PubMed  Google Scholar 

  9. Blues CM, Pomfrett CJ. Respiratory sinus arrhythmia and clinical signs of anaesthesia in children. Br J Anaesth. 1998;81(3):333–7.

    Article  CAS  PubMed  Google Scholar 

  10. Wang DY, Pomfrett CJ, Healy TE. Respiratory sinus arrhythmia: a new, objective sedation score. Br J Anaesth. 1993;71(3):354–8.

    Article  CAS  PubMed  Google Scholar 

  11. Vettorello M, Colombo R, De Grandis CE, Costantini E, Raimondi F. Effect of fentanyl on heart rate variability during spontaneous and paced breathing in healthy volunteers. Acta Anaesthesiol Scand. 2008;52(8):1064–70. doi:10.1111/j.1399-6576.2008.01713.x.

    Article  CAS  PubMed  Google Scholar 

  12. Mathru M, Esch O, Lang J, Herbert ME, Chaljub G, Goodacre B, vanSonnenberg E. Magnetic resonance imaging of the upper airway: effects of propofol anesthesia and nasal continuous positive airway pressure in humans. Anesthesiology. 1996;84(2):273–9.

    Article  CAS  PubMed  Google Scholar 

  13. Benumof JL. Obstructive sleep apnea in the adult obese patient: implications for airway management. J Clin Anesth. 2001;13(2):144–56.

    Article  CAS  PubMed  Google Scholar 

  14. Bradley TD, Floras JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet. 2009;373(9657):82–93. doi:10.1016/S0140-6736(08)61622-0.

    Article  PubMed  Google Scholar 

  15. Smith RP, Veale D, Pepin JL, Levy PA. Obstructive sleep apnoea and the autonomic nervous system. Sleep Med Rev. 1998;2(2):69–92.

    Article  CAS  PubMed  Google Scholar 

  16. Dingli K, Assimakopoulos T, Wraith PK, Fietze I, Witt C, Douglas NJ. Spectral oscillations of RR intervals in sleep apnoea/hypopnoea syndrome patients. Eur Respir J. 2003;22(6):943–50.

    Article  CAS  PubMed  Google Scholar 

  17. Bailey PL, Pace NL, Ashburn MA, Moll JW, East KA, Stanley TH. Frequent hypoxemia and apnea after sedation with midazolam and fentanyl. Anesthesiology. 1990;73(5):826–30.

    Article  CAS  PubMed  Google Scholar 

  18. Galletly DC, Westenberg AM, Robinson BJ, Corfiatis T. Effect of halothane, isoflurane and fentanyl on spectral components of heart rate variability. Br J Anaesth. 1994;72(2):177–80.

    Article  CAS  PubMed  Google Scholar 

  19. Komatsu T, Kimura T, Sanchala V, Shibutani K, Shimada Y. Effects of fentanyl–diazepam–pancuronium anesthesia on heart rate variability: a spectral analysis. J Cardiothorac Vasc Anesth. 1992;6(4):444–8.

    Article  CAS  PubMed  Google Scholar 

  20. Latson TW, McCarroll SM, Mirhej MA, Hyndman VA, Whitten CW, Lipton JM. Effects of three anesthetic induction techniques on heart rate variability. J Clin Anesth. 1992;4(4):265–76.

    Article  CAS  PubMed  Google Scholar 

  21. Riznyk L, Fijalkowska M, Przesmycki K. Effects of thiopental and propofol on heart rate variability during fentanyl-based induction of general anesthesia. Pharmacol Rep. 2005;57(1):128–34.

    CAS  PubMed  Google Scholar 

  22. Schubert A, Palazzolo JA, Brum JM, Ribeiro MP, Tan M. Heart rate, heart rate variability, and blood pressure during perioperative stressor events in abdominal surgery. J Clin Anesth. 1997;9(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  23. Smith AL, Owen H, Reynolds KJ. Heart rate variability indices for very short-term (30 beat) analysis. Part 1: survey and toolbox. J Clin Monit Comput. 2013;27(5):569–76. doi:10.1007/s10877-013-9471-4.

    Article  PubMed  Google Scholar 

  24. Smith AL, Owen H, Reynolds KJ. Heart rate variability indices for very short-term (30 beat) analysis. Part 2: validation. J Clin Monit Comput. 2013;27(5):577–85. doi:10.1007/s10877-013-9473-2.

    Article  PubMed  Google Scholar 

  25. Task Force of European Society of Cardiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81.

    Article  Google Scholar 

  26. Laguna P, Moody GB, Mark RG. Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans Biomed Eng. 1998;45(6):698–715.

    Article  CAS  PubMed  Google Scholar 

  27. Moody GB. Spectral analysis of heart rate without resampling. Paper presented at the Computers in Cardiology. 1993. Proc., London, UK, Sep. 5–8.

  28. Chang KL, Monahan KJ, Griffin MP, Lake D, Moorman JR. Comparison and clinical application of frequency domain methods in analysis of neonatal heart rate time series. Ann Biomed Eng. 2001;29(9):764–74.

    Article  CAS  PubMed  Google Scholar 

  29. Clifford GD. Signal processing methods for heart rate variability. Ph.D. thesis, Oxford University, Oxford. 2002.

  30. Smith A-L. Using very short-term heart rate variability to monitor fentanyl-induced changes in the autonomic nervous system preceding respiratory depression. Ph.D. dissertation, Flinders University, Adelaide. 2011.

  31. Hamilton RM, McKechnie PS, Macfarlane PW. Can cardiac vagal tone be estimated from the 10-second ECG? Int J Cardiol. 2004;95(1):109–15.

    Article  PubMed  Google Scholar 

  32. Thong T, Li K, McNames J, Aboy M, Goldstein B. Accuracy of ultra-short heart rate variability measures. Paper presented at the 25th annual international conference IEEE engineering in medicine and biology society, Cancun, Mexico, Sep 17–21. 2003.

  33. de Bruyne MC, Kors JA, Hoes AW, Klootwijk P, Dekker JM, Hofman A, van Bemmel JH, Grobbee DE. Both decreased and increased heart rate variability on the standard 10-second electrocardiogram predict cardiac mortality in the elderly: the Rotterdam Study. Am J Epidemiol. 1999;150(12):1282–8.

    Article  PubMed  Google Scholar 

  34. Salahuddin L, Cho J, Jeong MG, Kim D. Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. Paper presented at the 29th annual international conference IEEE engineering in medicine and biology society, Lyon, Aug 23–26. 2007.

  35. Salahuddin L, Jeong MG, Kim D. Ultra short term analysis of heart rate variability using normal sinus rhythm and atrial fibrillation EGG data. Paper presented at the 9th international conference e-health networking, application and services, Taipei Jun. 19–22. 2007.

  36. Suppappola S, Sun Y. A comparison of three QRS detection algorithms using the AHA ECG database. Paper presented at the proceedings of the annual international conference of the IEEE engineering in medicine and biology society, Orlando, FL. 1991.

  37. Gonçalves H, Henriques-Coelho T, Bernardes J, Rocha AP, Nogueira A, Leite-Moreira A. Linear and nonlinear heart-rate analysis in a rat model of acute anoxia. Physiol Meas. 2008;29(9):1133–43. doi:10.1088/0967-3334/29/9/010.

    Article  PubMed  Google Scholar 

  38. Chernick MR. Bootstrap methods. 2nd ed. New York: Wiley Interscience; 2008. doi:10.1002/9780470192573.

  39. Haukoos JS, Lewis RJ. Advanced statistics: bootstrapping confidence intervals for statistics with “difficult” distributions. Acad Emerg Med. 2005;12(4):360–5. doi:10.1197/j.aem.2004.11.018.

    Article  PubMed  Google Scholar 

  40. Efron B, Tibshirani R. An introduction to the bootstrap: monographs on statistics and applied probability, vol 57. New York: Chapman and Hall; 1993.

  41. Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat Med. 2000;19(9):1141–64. doi:10.1002/(SICI)1097-0258(20000515)19:9<1141:AID-SIM479>3.0.CO;2-F.

    Article  CAS  PubMed  Google Scholar 

  42. Cumming G. Inference by eye: reading the overlap of independent confidence intervals. Stat Med. 2009;28(2):205–20. doi:10.1002/sim.3471.

    Article  PubMed  Google Scholar 

  43. Wolfe R, Cumming G. Communicating the uncertainty in research findings: confidence intervals. J Sci Med Sport. 2004;7(2):138–43.

    Article  CAS  PubMed  Google Scholar 

  44. Keselman HJ, Cribbie R, Holland B. Controlling the rate of Type I error over a large set of statistical tests. Br J Math Stat Psychol. 2002;55(1):27–39.

    Article  CAS  PubMed  Google Scholar 

  45. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B. 1995;57(1):289–300. http://www.jstor.org/stable/2346101.

  46. Sosnowski M, Petelenz T, Leski J. Return maps: a non-linear method for evaluation of respiratory sinus arrhythmia. Paper presented at the computers in cardiology 1994, Bethesda, MD, Sep 25–28. 1994.

  47. Voss A, Kurths J, Kleiner HJ, Witt A, Wessel N, Saparin P, Osterziel KJ, Schurath R, Dietz R. The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc Res. 1996;31(3):419–33.

    Article  CAS  PubMed  Google Scholar 

  48. Schirdewan A, Meyerfeldt U, Wessel N, Bondke HJ, Schreiber P, Sadowski R, Kamke W, Wiedemann M. Heart rate dynamics before the onset of ventricular tachyarrhythmias: results of the cardioverter defibrillator registry MARITA. J Am Coll Cardiol. 2004;43(5, Supplement 1):A125–A126.

  49. Wessel N, Malberg H, Bauernschmitt R, Kurths J. Nonlinear methods of cardiovascular physics and their clinical applicability. Int J Bifurc Chaos. 2007;17(10):3325–71. doi:10.1142/S0218127407019093.

    Article  Google Scholar 

  50. Freilich S, Goff EA, Malaweera AS, Twigg GL, Simonds AK, Mathias CJ, Morrell MJ. Sleep architecture and attenuated heart rate response to arousal from sleep in patients with autonomic failure. Sleep Med. 2010;11(1):87–92. doi:10.1016/j.sleep.2008.12.017.

    Article  PubMed  Google Scholar 

  51. Baguet JP, Barone-Rochette G, Pepin JL. Hypertension and obstructive sleep apnoea syndrome: current perspectives. J Hum Hypertens. 2009;23(7):431–43. doi:10.1038/jhh.2008.147.

    Article  PubMed  Google Scholar 

  52. Iturriaga R, Moya EA, Del Rio R. Cardiorespiratory alterations induced by intermittent hypoxia in a rat model of sleep apnea. Adv Exp Med Biol. 2011;669:271–4. doi:10.1007/978-1-4419-5692-7_55.

    Article  Google Scholar 

  53. Cubuk R, Tasali N, Yilmazer S, Gokalp P, Celik L, Dagdeviren B, Guney S. Effect of an oral anxiolytic medication and heart rate variability on image quality of 64-slice MDCT coronary angiography. Radiol Med. 2011;116(1):47–55. doi:10.1007/s11547-010-0581-5.

    Article  CAS  PubMed  Google Scholar 

  54. Furutani Y, Shiigi T, Nakamura H, Nakamura Y, Ishizaki H, Uchiyama K, Harada M, Shimizu A, Matsuzaki M. Influence of the dead space induced by the face mask on the measure of heart rate variability (Japanese). J Cardiol. 1997;29(3):171–6.

    CAS  PubMed  Google Scholar 

  55. Gole Y, Gargne O, Coulange M, Steinberg JG, Bouhaddi M, Jammes Y, Regnard J, Boussuges A. Hyperoxia-induced alterations in cardiovascular function and autonomic control during return to normoxic breathing. Eur J Appl Physiol. 2010;. doi:10.1007/s00421-010-1711-4.

    PubMed  Google Scholar 

  56. Askanazi J, Silverberg P, Hyman A, Foster R, Yaremchuk M, Kinney JM. Effects of the mask and mouthpiece plus noseclip on spontaneous breathing pattern. Crit Care Med. 1978;6(3):143–6.

    Article  CAS  PubMed  Google Scholar 

  57. Eckberg DL. Human sinus arrhythmia as an index of vagal cardiac outflow. J Appl Physiol. 1983;54(4):961–6.

    CAS  PubMed  Google Scholar 

  58. Lund VE, Kentala E, Scheinin H, Klossner J, Helenius H, Sariola-Heinonen K, Jalonen J. Heart rate variability in healthy volunteers during normobaric and hyperbaric hyperoxia. Acta Physiol Scand. 1999;167(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  59. Bartels MN, Gonzalez JM, Kim W, De Meersman RE. Oxygen supplementation and cardiac-autonomic modulation in COPD. Chest. 2000;118(3):691–6.

    Article  CAS  PubMed  Google Scholar 

  60. Shibata S, Iwasaki K, Ogawa Y, Kato J, Ogawa S. Cardiovascular neuroregulation during acute exposure to 40, 70, and 100 % oxygen at sea level. Aviat Space Environ Med. 2005;76(12):1105–10.

    CAS  PubMed  Google Scholar 

  61. Poyhonen M, Syvaoja S, Hartikainen J, Ruokonen E, Takala J. The effect of carbon dioxide, respiratory rate and tidal volume on human heart rate variability. Acta Anaesthesiol Scand. 2004;48(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  62. Zickmann B, Hofmann HC, Pottkamper C, Knothe C, Boldt J, Hempelmann G. Changes in heart rate variability during induction of anesthesia with fentanyl and midazolam. J Cardiothorac Vasc Anesth. 1996;10(5):609–13.

    Article  CAS  PubMed  Google Scholar 

  63. Agelink MW, Majewski TB, Andrich J, Mueck-Weymann M. Short-term effects of intravenous benzodiazepines on autonomic neurocardiac regulation in humans: a comparison between midazolam, diazepam, and lorazepam. Crit Care Med. 2002;30(5):997–1006.

    Article  CAS  PubMed  Google Scholar 

  64. Komatsu T, Singh PK, Kimura T, Nishiwaki K, Bando K, Shimada Y. Differential effects of ketamine and midazolam on heart rate variability. Can J Anaesth. 1995;42(11):1003–9.

    Article  CAS  PubMed  Google Scholar 

  65. Michaloudis D, Kochiadakis G, Georgopoulou G, Fraidakis O, Chlouverakis G, Petrou A, Pollard BJ. The influence of premedication on heart rate variability. Anaesthesia. 1998;53(5):446–53.

    Article  CAS  PubMed  Google Scholar 

  66. Ristikankare M, Julkunen R, Heikkinen M, Laitinen T, Wang SX, Hartikainen J. Cardiac autonomic regulation during gastroscopy. Dig Liver Dis. 2009;41(9):648–52. doi:10.1016/j.dld.2009.01.008.

    Article  CAS  PubMed  Google Scholar 

  67. Win NN, Fukayama H, Kohase H, Umino M. The different effects of intravenous propofol and midazolam sedation on hemodynamic and heart rate variability. Anesth Analg. 2005;101(1):97–102.

    Article  CAS  PubMed  Google Scholar 

  68. Furutani M, Tanaka H, Agari I. Anxiety and heart rate variability before sleep indicate chronic stress in students. Percept Mot Skills. 2011;112(1):138–50.

    Article  PubMed  Google Scholar 

  69. Lee KC, Chao YH, Yiin JJ, Hsieh HY, Dai WJ, Chao YF. Evidence that music listening reduces preoperative patients’ anxiety. Biol Res Nurs. 2011;. doi:10.1177/1099800410396704.

    PubMed Central  Google Scholar 

  70. Schachinger H, Muller BU, Strobel W, Drewe J, Ritz R. Effect of midazolam on transfer function between beat-to-beat arterial pressure and inter-beat interval length. Br J Anaesth. 2000;84(3):316–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Anaesthetist Dr. Cormac Fahy assisted with clinical studies. Statistical advice was provided by Mr. Pawel Skuza, Statistical Consultant, Flinders University. GE Healthcare (Chalfont St Giles, UK) provided S/5Collect software.

Conflict of interest

Anne-Louise Smith: Has neither financial disclosures nor conflicts of interests. Harry Owen: Has neither financial disclosures nor conflicts of interests. Karen Reynolds: Has neither financial disclosures nor conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Louise Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, AL., Owen, H. & Reynolds, K.J. Can short-term heart rate variability be used to monitor fentanyl–midazolam induced changes in ANS preceding respiratory depression?. J Clin Monit Comput 29, 393–405 (2015). https://doi.org/10.1007/s10877-014-9617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-014-9617-z

Keywords

Navigation