Skip to main content
Log in

Correlation of Narcotrend Index, entropy measures, and spectral parameters with calculated propofol effect-site concentrations during induction of propofol–remifentanil anaesthesia

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Objective. The aim of this study was to compare the EEG parameter Narcotrend Index with the spectral and entropy-based EEG parameters median frequency, 95% spectral edge frequency, burst-compensated 95% spectral edge frequency, spectral entropy, amplitude entropy, and approximate entropy with regard to their ability to describe cerebral anaesthetic drug effects during induction of propofol–remifentanil anaesthesia. Methods. Three induction schemes were studied with 10 patients each receiving 2 mg propofol/kg/60s (group 1), 4 mg/kg/120s (group 2), and 4 mg/kg/240s (group 3). The EEG was recorded with the EEG monitor Narcotrend®. To analyse the relation between drug effect and EEG parameters, Spearman rank correlation of the different EEG parameters with the calculated propofol effect-site concentration was computed. Results. In all groups Narcotrend Index showed the highest correlation with the propofol effect-site concentration and the lowest variability of individual correlation values. Furthermore, only the Narcotrend Index showed a monophasic behaviour over the entire time period analysed. In the group of entropy parameters approximate entropy yielded the best results. Among the spectral parameters the burst-compensated 95% spectral edge frequency had the highest correlation with the propofol effect-site concentration. It was markedly higher than for the standard spectral edge frequency. The correlations of median frequency and amplitude entropy with propofol effect-site concentration were the lowest. Conclusions. Changes in the propofol effect-site concentration during induction of anaesthesia were best described by the multivariate Narcotrend Index compared to conventional spectral EEG parameters and different entropy measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heier T, Steen PA. Assessment of anaesthesia depth. Acta Anaesthesiol Scand 1996; 40: 1087–1100.

    Google Scholar 

  2. Kreuer S, Molter G, Biedler A, Larsen R, Schoth S, Wilhelm W. Narcotrend stages and end-tidal desflurane concentrations – an investigation during recovery from desflurane/remifentanil anaesthesia (in German). Anaesthesist 2002; 51: 800-804.

    Google Scholar 

  3. Kreuer S, Biedler A, Larsen R, Altmann S, Wilhelm W. NarcotrendTM monitoring allows faster emergence and a reduction of drug consumption in propofol–remifentanil anesthesia. Anesthesiology 2003; 99: 34–41.

    Google Scholar 

  4. Münte S, Münte TF, Grotkamp J, et al. Implicit memory varies as a function of hypnotic electroencephalogram stage in surgical patients. Anesth Analg 2003; 97: 132–138.

    Google Scholar 

  5. Schultz B, Grouven U, Schultz A. Automatic classification algorithms of the EEG monitor Narcotrend for routinely recorded EEG data from general anaesthesia: A validation study. Biomed Tech 2002; 47: 9–13.

    Google Scholar 

  6. Wilhelm W, Kreuer S, Larsen R und die Narcotrend-Studien- gruppe. Narcotrend EEG monitoring during total intravenous anaesthesia in 4.630 patients (in German). Anaesthesist 2002; 51: 980–988.

    Google Scholar 

  7. Schwilden H, Stoeckel H. Quantitative EEG analysis during anaesthesia with isoflurane in nitrous oxide at 1.3 and 1.5 MAC. Br J Anaesth 1987; 59: 738–745.

    Google Scholar 

  8. Schwender D, Daunderer M, Mulzer S, Klasing S, Finsterer U, Peter K. Spectral edge frequency of the electroencephalogram to monitor depth of anaesthesia with isoflurane or propofol. Br J Anaesth 1996; 77: 179–184.

    Google Scholar 

  9. Jansen BH. Nonlinear dynamics and quantitative EEG analysis. Electroenceph Clin Neurophysiol 1996; 45 (Suppl): 39-56.

    Google Scholar 

  10. Pijn JP, Neerven JV, Noest A, Lopes da Silva FH. Chaos or noise in EEG signals; dependence on state and brain site. Electroencephalogr Clin Neurophysiol 1991; 79: 371–381.

    Google Scholar 

  11. Shannon CE. A mathematical theory of communication. Bell Syst Tech J 1948; 27: 379–423, 623–656.

    Google Scholar 

  12. Inouye T, Shinosaki K, Sakamoto H, et al. Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr Clin Neurophysiol 1991; 79: 204–210.

    Google Scholar 

  13. Bruhn J, Lehmann LE, Röpcke H, Bouillon TW, Hoeft A. Shannon entropy applied to the measurement of electroencephalographic effects of desflurane. Anesthesiology 2001; 95: 30–35.

    Google Scholar 

  14. Pincus SM, Gladstone IM, Ehrenkranz RA. A regularity statistic for medical data analysis. J Clin Monit 1991; 7: 335–345.

    Article  PubMed  Google Scholar 

  15. Johansen JW, Sebel PS. Development and clinical application of electroencephalographic bispectrum monitoring. Anesthesiology 2000; 93: 1336–1344.

    Article  PubMed  Google Scholar 

  16. Bruhn J, Röpcke H, Hoeft A. Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia. Anesthesiology 2000; 92: 715–726.

    Article  PubMed  Google Scholar 

  17. Rampil IJ, Lockhart SH, Eger EI, Yasuda N, Weiskopf RB, Calahan MK. The electroencephalographic effects of desflurane in humans. Anesthesiology 1991; 74: 434–439.

    PubMed  Google Scholar 

  18. Marsh B, White M, Morton N, Kenny GNC. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 1991; 67: 41–48.

    PubMed  Google Scholar 

  19. Schultz B, Kreuer S, Wilhelm W, Grouven U, Schultz A. The Narcotrend® monitor. Development and interpretation algorithms (in German). Anaesthesist 2003, 52: 1143–1148.

    Article  PubMed  Google Scholar 

  20. Rezek IA, Roberts SJ. Stochastic complexity measures for physiological signal analysis. IEEE Trans Biomed Eng 1998; 45: 1186–1191.

    Article  PubMed  Google Scholar 

  21. Vuyk J, Mertens MJ, Olofsen E, Burm AG, Bovill JG. Propofol anesthesia and rational opioid selection: determination of optimal EC50-EC95 propofol–opioid concentrations that assure adequate anesthesia and a rapid return of consciousness. Anesthesiology 1997; 87: 1549–1562.

    Article  PubMed  Google Scholar 

  22. Vuyk J. TCI: Supplementation and drug interactions. Anaesthesia 1998; 53 (Suppl 1): 35–41.

    Google Scholar 

  23. Drummond JC, Patel PM. Cerebral physiology and the effects of anesthetics and techniques. In: Miller RD, ed. Anaesthesia, 5th edition, Philadelphia: Churchill Livingstone, 2000: 695–733.

    Google Scholar 

  24. Bruhn J, Röpcke H, Rehberg B, Bouillon T, Hoeft A. Electroencephalogram approximate entropy classifies the occurrence of burst suppression pattern as increasing anesthetic drug effect. Anesthesiology 2000; 93: 981–985.

    Article  PubMed  Google Scholar 

  25. Schultz A, Grouven U, Schultz B. SEF90, SEF95 and the median do not discriminate deep EEG stages during propofol/remifentanil anaesthesia. Eur J Anaesthesiol 2000; 17 (Suppl 19): A-71.

    Google Scholar 

  26. Kuizenga K, Wierda JM, Kalkman CJ. Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br J Anaesth 2001; 86: 354–360.

    Article  PubMed  Google Scholar 

  27. Struys M, Versichelen L, Mortier E, et al. Comparison of spontaneous frontal EMG, EEG power spectrum and bispectral index to monitor propofol drug effect and emergence. Acta Anaesthesiol Scand 1998; 42: 628–636.

    PubMed  Google Scholar 

  28. Pincus SM, Goldberger AL. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 1994; 88: 2297–2301.

    Google Scholar 

  29. Inouye T, Shinosaki K, Sakamoto H, et al. Abnormalities of background EEG determined by the entropy of power spectra in epileptic patients. Electroencephalogr Clin Neurophysiol 1992; 82: 203–207.

    Article  PubMed  Google Scholar 

  30. Levy WJ, Pantin E, Mehta S, McGarvey M. Hypothermia and the approximate entropy of the electroencephalogram. Anesthesiology 2003; 98: 53–57.

    Article  PubMed  Google Scholar 

  31. Thomsen CE, Prior PF. Quantitative EEG in assessment of anaesthetic depth: comparative study of methodology. Br J Anaesth 1996; 77: 172–178.

    PubMed  Google Scholar 

  32. Fell J, Röschke J, Mann K, Schäffner C. Discrimination of sleep stages: A comparison between spectral and nonlinear EEG measures. Electroencephalogr Clin Neurophysiol 1996; 98: 401–410.

    Article  PubMed  Google Scholar 

  33. Zhang XS, Roy RJ. Derived fuzzy knowledge model for estimating the depth of anesthesia. IEEE Trans Biomed Eng 2001; 48: 312–323.

    Article  PubMed  Google Scholar 

  34. Drover DR Lemmens HJ, Pierce ET, et al. Patient state index – titration of delivery and recovery from propofol, alfentanil, and nitrous oxide anesthesia. Anesthesiology 2002; 97: 82–89.

    Article  PubMed  Google Scholar 

  35. Sleigh JW, Donovan J. Comparison of bispectral index, 95% spectral edge frequency and approximate entropy of the EEG, with changes in heart rate variability during induction of general anaesthesia. Br J Anaesth 1999; 82: 666–671.

    PubMed  Google Scholar 

  36. Doi M, Gajraj RJ, Mantzaridis H, Kenny GNC. Relationship between calculated blood concentration of propofol and electrophysiological variables duringemergence from anaesthesia: comparison of bispectral index, spectral edge frequency, median frequency and auditory evoked potential index. Br J Anaesth 1997; 78: 180–184.

    PubMed  Google Scholar 

  37. Särkelä M, Mustola S, Seppanen T, et al. Automatic analysis and monitoring of burst suppression in anesthesia. J Clin Monit Comput 2002; 17: 125–134.

    Article  PubMed  Google Scholar 

  38. Vakkuri A, Yli-Hankala A, Mustola S, Tenkanen N, Viertiö-Oja H. Comparison of entropy and bispectral index of EEG in propofol, sevoflurane and thiopental anaesthesia. Eur J Anaesthesiol 2003; 20 (Suppl 30): A-9.

    Google Scholar 

  39. Lennmarken C, Lindholm ML, Greenwald SC, Sandin R. Confirmation that low intraoperative BIS levels predict increased risk of post-operative mortality. Anesthesiology 2003; 99: A-303.

    Google Scholar 

  40. Beger FA, Schultz B, Lüllwitz E, et al. Neural auditory processing in children under EEG-controlled anaesthesia revealed by positron emission tomography (PET). Eur J Anaesthesiol 2003; 20 (Suppl 30): A-328.

    Google Scholar 

  41. Schultz B, Schultz A. EEG monitoring improves quality and safety of TIVA. Anaesth Intensive Care 2002; 30: 817–818.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Grouven PhD.

Additional information

Drs U. Grouven, A. Schultz, and B. Schultz are members of the research group at Hannover Medical School which developed the classification algorithms implemented in the EEG monitor Narcotrend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grouven, U., Beger, F.A., Schultz, B. et al. Correlation of Narcotrend Index, entropy measures, and spectral parameters with calculated propofol effect-site concentrations during induction of propofol–remifentanil anaesthesia. J Clin Monit Comput 18, 231–240 (2004). https://doi.org/10.1007/s10877-005-2917-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-005-2917-6

Keywords

Navigation