Skip to main content
Log in

Biosynthesis, Characterization and Antibacterial Effect of Phenolics-Coated Silver Nanoparticles Using Cassia javanica L.

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The development of phytomediated nanoparticles synthesis is receiving increasing attention due to ease of preparation, less chemical handling, and eco-friendly. In the present study, crystallization of silver ions to nanosized particles by aqueous leaves extract of Cassia javanica through bioreduction process was assessed. Strong plasmon resonance of silver nanoparticles was observed around 435 nm. UV–Vis spectroscopy, transmission electron microscope and Fourier transform infrared spectroscopy were performed to examine the formation of silver nanoparticles (AgNPs). The antibacterial activity of AgNPs was tested against four pathogenic Gram-negative bacteria. AgNPs showed strong antibacterial activity. The strongest activity was recorded on Pseudomonas aeruginosa with 34 mm zone of inhibition followed by Escherichia coli (28 mm), Enterobacter aerogenes (25 mm) and Salmonella typhimurium (23 mm) respectively. The Gram-negative bacteria were highly sensitive to AgNPs, whereas less sensitive to silver nitrate (AgNO3) and C. javanica leaves extract. The AgNPs were also evaluated for the estimation of total phenolic content. It is concluded that leaves extracts can be used for the synthesis of AgNPs that is environmentally friendly and cost effective. These preparations can be used for various biotechnology and medical applications for controlling pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. W. Boucher, G. H. Talbot, and J. S. Bradley (2009). Clin. Infect. Dis. 48, 1–12.

    Article  Google Scholar 

  2. L. B. Rice (2008). J. Infect. Dis. 197, 1079–1081.

    Article  Google Scholar 

  3. T. N. V. K. V. Prasad and E. K. Elumalai (2011). Asian Pac. J. Trop. Biomed. 1, 439–442.

    Article  CAS  Google Scholar 

  4. C. Krishnaraj, P. Muthukumaran, R. Ramachandran, M. D. Balakumaran, and P. T. Kalaichelvan (2014). Biotechnol. Rep. 4, 42–49.

    Article  Google Scholar 

  5. I. Sondi and S. B. Sondi (2004). J. Colloid Interface Sci. 275, 177–182.

    Article  CAS  Google Scholar 

  6. G. Zhao and J. Stevens (1998). Biometals 11, 27–32.

    Article  CAS  Google Scholar 

  7. S. Pavagadhi, M. Sathishkumar, and R. Balasubramanian (2014). Water Res. 55, 280–291.

    Article  CAS  Google Scholar 

  8. A. R. Binupriya, M. Sathishkumar, and Y. Soon (2010). Ind. Eng. Chem. Res. 49, 852–858.

    Article  CAS  Google Scholar 

  9. S. Prabhu and E. K. Poulose (2012). Int. Nano. Lett. 2, 32–42.

    Article  Google Scholar 

  10. R. S. Suganya, K. B. Priya, and S. Roxy (2012). IRJP 3, 285–288.

    Google Scholar 

  11. T. J. Beveridge, M. N. Hughes, H. Lee, K. T. Leung, R. K. Poole, I. Savvaidis, S. Silver, and J. T. Trevors (1997). Adv. Microb. Physiol. 38, 178.

    Google Scholar 

  12. M. I. Sriram, K. Kalishwaralal, and S. Gurunathan (2012). Methods Mol. Biol. 906, 33–43.

    CAS  Google Scholar 

  13. G. Li, D. He, Y. Qian, B. Guan, Y. Cui, S. Gao, K. Yokoyama, and L. Wang (2012). Int. J. Mol. Sci. 13, 466–476.

    Article  CAS  Google Scholar 

  14. T. Elavazhagan and K. D. Arunachalam (2011). Int. J. Nanomed. 6, 1265–1278.

    Article  CAS  Google Scholar 

  15. D. M. Ali, N. Thajuddin, K. Jeganathan, and M. Gunasekaran (2011). Colloids Surf. B 85, 360–365.

    Article  Google Scholar 

  16. V. Kumar and S. K. Yadav (2009). J. Chem. Technol. Biotechnol. 84, 151–157.

    Article  CAS  Google Scholar 

  17. K. B. Narayanan and N. Sakthivel (2008). Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett. 62, 4588–4590.

    Article  CAS  Google Scholar 

  18. P. Venkatachalam, R. Kalaiarasi, and N. Jayalakshmi (2010). Plant Cell Biotechnol. Mol. Biol. 11, 1–16.

    Google Scholar 

  19. K. P. Chittam and S. L. Deore (2013). J. Biomed. Pharm. Res. 2, (1), 33–35.

    Google Scholar 

  20. U. C. Kumavat, S. N. Shimpi, and S. P. Jagdale (2012). J. Adv. Pharm. Tech. Res. 3, (1), 47–51.

    Google Scholar 

  21. P. Kaur and S. Arora (2008). J. China Clin. Med. 5, (8), 457–462.

    Google Scholar 

  22. S. Ganesan (2008). Natl. Prod. Rad. 7, (2), 166–172.

    Google Scholar 

  23. H. Y. Cheng, C. M. Yang, T. C. Lin, D. E. Shieh, and C. C. Lin (2006). J. Med. Microbiol. 55, 201–206.

    Article  CAS  Google Scholar 

  24. J. I. Pandith (2012). J. Drug Deliv. Ther. 2, (4), 135–138.

    CAS  Google Scholar 

  25. R. W. Bauer, M. D. K. Kirby, J. C. Sherris, and M. Turck (1966). Am. J. Clin. Pathol. 45, 493–496.

    CAS  Google Scholar 

  26. C. H. Collins, P. M. Lynes, and J. M. Grange, Microbiological Methods, 7th ed (Butterwort-Heinemann, Oxford, 1995), pp. 175–190.

    Google Scholar 

  27. P. A. Wayne and CLSI—Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard. Document M02-A10, 10th ed (CLSI, Wayne, 2009).

    Google Scholar 

  28. K. Das, R. K. S. Tiwari, and D. K. Shrivastava (2010). J. Med. Plants Res. 4, 104–111.

    Google Scholar 

  29. A. J. R. Moller (1966). Odontolgisk Tidskrift 74, 1–38.

    Google Scholar 

  30. T. M. A. Alves, A. F. Silva, M. Brandao, T. S. M. Grandi, E. F. A. Smania Jr., A. Smania, and C. L. Zani (2010). Memorias do Instituto Oswaldo Cruz 95, 367–373.

    Article  Google Scholar 

  31. P. A. Wayne and NCCLS, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard. Document M07-A05, 5th ed (NCCLS, Wayne, 2000).

    Google Scholar 

  32. V. L. Singletone and J. A. Rossi (1996). Am. J. Enol. Vitic. 16, 144–153.

    Google Scholar 

  33. N. Venugopal and A. Mitra (2013). Appl. Surf. Sci. 85, 357–372.

    Article  Google Scholar 

  34. G. Kaur, R. K. Verma, D. K. Rai, and S. B. Rai (2012). J. Lumin. 132, 1683–1687.

    Article  CAS  Google Scholar 

  35. M. Darroudi, A. Khorsand Zak, M. R. Muhamad, and R. Zamiri (2014) Res. Chem. Intermed. 41, 4587–4594. doi:10.1007/s11164-014-1554-4).

    Google Scholar 

  36. K. Shameli, M. B. Ahmad, W. M. Z. W. Yunus, N. A. Ibrahim, R. A. Rahman, M. Jokar, and M. Darroudi (2010). Int. J. Nanomed. 5, 573–579.

    Article  CAS  Google Scholar 

  37. J. A. Dahl, L. Bettye, L. S. Maddux, and J. E. Hutchison (2007). J. Chem. Rev. 107, 2228–2269.

    Article  CAS  Google Scholar 

  38. B. Rameshbabu and G. Rajagopal (2014). IJNPR 5, (1), 34–39.

    Google Scholar 

  39. U. B. Jagtap and V. A. Bapat (2013). Ind. Crops Prod. 46, 132–137.

    Article  CAS  Google Scholar 

  40. V. Ahluwalia, J. Kumar, R. Sisodia, and N. A. Shakil (2014). Ind. Crops Prod. 55, 202–206.

    Article  CAS  Google Scholar 

  41. C. Jayaseelan, R. Ramkumar, A. Rahuman, and P. Perumal (2013). Ind. Crops Prod. 45, 423–429.

    Article  CAS  Google Scholar 

  42. I. Dragieva, S. Stoeva, P. Stoimenov, E. Pavlikianov, and K. Klabunde (1999). Nanostruct. Mater. 129, 267–270.

    Article  Google Scholar 

  43. T. Hamouda, A. Myc, B. Donovan, A. Shih, J. D. Reuter, and J. R. Baker (2001). Microbiol. Res. 156, 1–7.

    Article  CAS  Google Scholar 

  44. P. Dibrov, J. Dzioba, K. K. Gosink, and C. C. Hase (2002). Antimicrob. Agents Chemother. 46, 2668–2670.

    Article  CAS  Google Scholar 

  45. F. Gianluigi, F. Annarita, G. Stefania, P. Luciana, R. Mahendra, M. Giancarlo, and G. Massimiliano (2015). Molecules 20, 8856–8874.

    Article  Google Scholar 

  46. N. A. Amro, L. P. Kotra, K. Wadu-Mesthrige, A. Bulychev, S. Mobashery, and G. Liu (2000). Langmuir 16, 2789–2796.

    Article  CAS  Google Scholar 

  47. J. H. Crabtree, R. J. Burchette, R. A. Siddiqi, I. T. Huen, L. L. Handott, and A. Fishman (2003). Perit. Dial. Int. 23, 368–374.

    CAS  Google Scholar 

  48. S. Abuskhuna, J. Briody, M. McCann, M. Devereux, K. Kavanagh, and J. B. Fontecha (2004). Polyhedron 23, 1249–1255.

    Article  CAS  Google Scholar 

  49. F. Furno, K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, and S. M. Howdle (2004). J. Antimicrob. Chemother. 54, (2004), 1019–1024.

    Article  CAS  Google Scholar 

  50. W.-Y. Huang and Y.-Z. Cai (2009). Nutr. Cancer 62, 1–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh L. Londonkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankalgi, S.C., Londonkar, R.L., Madire, U. et al. Biosynthesis, Characterization and Antibacterial Effect of Phenolics-Coated Silver Nanoparticles Using Cassia javanica L.. J Clust Sci 27, 1485–1497 (2016). https://doi.org/10.1007/s10876-016-1016-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1016-9

Keywords

Navigation