Skip to main content
Log in

Deposition Morphology and Magnetism of Co, Pt Adatoms and Small CoPt Adclusters on Ni(100) Substrate

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Theoretical calculations of Co\(_{n-x}\)Pt\(_x\) (n = 1–3; \(x \le n\)) clusters on Ni(100) surface for their spin and orbital magnetic moments, as well as the magnetic anisotropy energy (MAE), are performed by using the density-functional theory (DFT) method including a self-consistent treatment of spin–orbit coupling (SOC). The results reveal that the ferromagnetic Co atoms in intra Co\(_{n-x}\)Pt\(_x\) adclusters couple ferromagnetically to their underlayer Ni atoms. The predominant inter-interactions between Co adatoms and Ni surface with the partly filled 3d band, together with the secondary intra-interactions between Co adatoms and Pt adatoms with fully filled 5d band, lead to a strongly quenched orbital moment (\(\mu _{\mathrm{{orb}}}^{\mathrm{{Co}}}\) = 0.18–0.14 \(\mu _B\); \(\mu _{\mathrm{{orb}}}^{\mathrm{{Pt}}} \approx \) 0.24–0.19 \(\mu _B\)) but a less quenched spin moment (\(\mu _{\mathrm{{spin}}}^{\mathrm{{Co}}} \approx \) 2.0 \(\mu _B\); \(\mu _{\mathrm{{spin}}}^{\mathrm{{Pt}}} \approx \) 0.35 \( \mu _B\)). The MAEs of CoPt adclusters exhibit a strong dependence on alloying effect rather than size effect, which is direly proportional to SOC strength and orbital moment anisotropy. The oxidations of CoPt clusters always reduce orbital magnetic moments and consequently decrease the corresponding MAEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Sellmyer and R. Skomski (2006). Advanced Magnetic Nanostructures (Springer, New York).

  2. L. A. Bloomfield, J. Deng, H. Zhang, and J. W. Emmert. Proceedings of the International Symposium on Cluster and Nanostructure Interface (World Scientific, Singapore, 2000).

  3. P. Ohresser, N. B. Brookes, S. Padovani, F. Scheurer, and H. Bulou (2001). Phys. Rev. B 64, 104429.

  4. A. Delga, J. Lagoute, V. Repain, C. Chacon, Y. Girard, M. Marathe, S. Narasimhan, and S. Rousset (2013). Phys. Rev. B 84, 035416.

  5. R. Skomski, J. Zhang, V. Sessi, J. Honolka, K. Kern, and A. Enders (2008). J. Appl. Phys. 103, 07D519.

  6. T. Balashov, T. Schuh, A. F. Takács, A. Ernst, S. Ostanin, J. Henk, I. Mertig, P. Bruno, T. Miyamachi, S. Suga, and W. Wulfhekel (2009). Phys. Rev. Lett. 102, 257203.

  7. P. Gambardella, S. Rusponi, M. Veronese, S. S. Dhesi, C. Grazioli, A. Dallmeyer, and H. Brune (2003). Science 300, 1130.

  8. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser (2000). Science 287, 1989.

  9. C. Chappert, A. Fert, and F. N. Van Dau (2007). Nat. Mater. 6, 813.

  10. A. Kleibert, K. H. Meiwes-Broer, and J. Bansmann (2009). Phys. Rev. B 79, 125423.

  11. J. T. Lau, A. Föhlisch, M. Martins, R. Nietubyc̀, M. Reif, and W. Wurth (2002). New J. Phys. 4, 98.

  12. J. T. Lau, A. Föhlisch, R. Nietubyc̀, M. Reif, and W. Wurth (2002). Phys. Rev. Lett. 89, 057201.

  13. Y. B. Xu, M. Tselepi, C. M. Guertler, C. A. F. Vaz, G. Wastlbauer, J. A. C. Bland, E. Dudzik and G. van der Laan (2001). J. Appl. Phys. 89, 7156.

  14. A. Lehnert, S. Rusponi, M. Etzkorn, S. Ouazi, P. Thakur, and H. Brune (2010). Phys. Rev. B 81, 104430.

  15. S. Vlaic, L. Gragnaniello, S. Rusponi, A. Cavallin, F. Donati, Q. Dubout, C. Piamonteze, J. Dreiser, F. Nolting, and H. Brune (2014). Phys. Rev. B 89, 245402.

  16. Ž. Šljivančanin and A. Pasquarello (2003). Phys. Rev. Lett. 90, 247202.

  17. T. Eelbo, M. Waśniowska, P. Thakur, M. Gyamfi, B. Sachs, T. O. Wehling, S. Forti, U. Starke, C. Tieg, A. I. Lichtenstein, and R. Wiesendanger (2013), Phys. Rev. Lett. 110, 136804.

  18. P. Ohresser, E. Otero, F. Wilhelm, A. Rogalev, C. Goyhenex, L. Joly, H. Bulou, M. Romeo, V. Speisser, J. Arabski, G. Schull, and F. Scheurer (2013). J. Appl. Phys. 114, 223912.

  19. L. Glaser, K. Chen, S. Fiedler, M. Wellhfer, W. Wurth, and M. Martins (2012). Phys. Rev. B 86, 075435.

  20. L. Bardotti, F. Tournus, C. Albin, O. Boisron, and V. Dupuis (2014). Phys. Chem. Chem. Phys. 16, 26653.

  21. F. Tournus, L. Bardotti, and V. Dupuis (2011). J. Appl. Phys. 109, 114309.

  22. S. Rohart, C. Raufast, L. Favre, E. Bernstein, E. Bonet, and V. Dupuis (2006). Phys. Rev. B 74, 104408.

  23. C. Etz, J. Zabloudil, P. Weinberger, and E. Y. Vedmedenko (2008). Phys. Rev. B 77, 184425.

  24. S. Bornemann, O. Šipr, S. Mankovsky, S. Polesya, J. B. Staunton, W. Wurth, J. Minár (2012). Phys. Rev. B 86, 104436.

  25. O. Šipr, S. Bornemann, J. Minár, S. Polesya, V. Popescu, A. Šimånek, and H. Ebert (2007). J. Phys. 19, 096203.

  26. Y. Xie and J. A. Blackman (2006). Phys. Rev. B 74, 054401.

  27. A. M. Conte, S. Fabris, and S. Baroni (2008). Phys. Rev. B 78, 014416.

  28. P. Błoński and J. Hafner (2009). J. Phys. 21, 426001.

  29. B. Lazarovits, L. Szunyogh, and P. Weinberger (2003). Phys. Rev. B 67, 024415.

  30. R. F. Sabiryanov, K. Cho, M. I. Larsson, W. D. Nix, and B. M. Clemens (2003). J. Magn. Magn. Mater. 258, 365.

  31. O. Šipr, S. Bornemann, H. Ebert, and J. Minár (2014). J. Phys. 26, 196002.

  32. M. Marathe, A. Díaz-Ortiz, and S. Narasimhan (2013). Phys. Rev. B 88, 245442.

  33. V. Sessi, F. Otte, S. Krotzky, C. Tieg, M. Wasniowska, P. Ferriani, S. Heinze, J. Honolka, and K. Kern (2014). Phys. Rev. B 89, 205425.

  34. F. Otte, P. Ferriani, and S. Heinze (2014). Phys. Rev. B 89, 205426.

  35. P. Błoński, A. Lehnert, S. Dennler, S. Rusponi, M. Etzkorn, G. Moulas, P. Bencok, P. Gambardella, H. Brune, and J. Hafner (2010). Phys. Rev. B 81, 104426.

  36. R. Felix-Medina, J. Dorantes-Dávila, and G. M. Pastor (2003). Phys. Rev. B 67, 094430.

  37. J. Hafner and D. Spišák (2007). Phys. Rev. B 76, 094420.

  38. V. Popescu, H. Ebert, B. Nonas and P. H. Dederichs (2001). Phys. Rev. B 64, 184407.

  39. R. Robles, A. Bergman, A. B. Klautau, O. Eriksson and L. Nordström (2008). J. Phys. 90, 015001.

  40. E. Martínez, R. C. Longo, R. Robles, A. Vega, and L. J. Gallego (2005). Phys. Rev. B 71, 165425.

  41. P. Mavropoulos, S. Lounis, R. Zeller, and S. Blügel (2006). Appl. Phys. A 82, 103.

  42. Š. Pick, V. S. Stepanyuk, A. L. Klavsyuk, L. Niebergall, W. Hergert, J. Kirschner, P. Bruno (2004). Phys. Rev. B, 70, 224419.

  43. Š. Pick, V. S. Stepanyuk, A. N. Baranov, W. Hergert, and P. Bruno (2003). Phys. Rev. B 68, 104410.

  44. A. Bergman, L. Nordstrom, A. B. Klautau, S. Frota-Pessôa, and O. Eriksson (2007). Phys. Rev. B 75, 224425.

  45. O. Hjortstam, J. Trygg, J. M. Wills, B. Johansson, and O. Eriksson (1996). Phys. Rev. B 53, 9204.

  46. B. Nonas, I. Cabria, R. Zeller, P. H. Dederichs, T. Huhne, and H. Ebert (2001). Phys. Rev. Lett. 86, 2146.

  47. B. Lazarovits, L. Szunyogh, and P. Weinberger (2002). Phys. Rev. B 65, 104441.

  48. R. N. Nogueira and H. M. Petrilli (1999). Phys. Rev. B 60, 4120.

  49. U. Martinez, G. Pacchioni, and F. Illas (2009). J. Chem. Phys. 130, 184711.

  50. M. K. Srivastava, Y. Wang, A. F. Kemper, and H. P. Cheng (2012). Phys. Rev. B 85, 165444.

  51. S. Haldar, B. S. Pujari, S. Bhandary, F. Cossu, O. Eriksson, D. G. Kanhere, and B. Sanyal (2014). Phys. Rev. B 89, 205411.

  52. M. Chen and D. Nikles (2002). J. Appl. Phys. 91, 8477.

  53. C. Petit, S. Rusponi, and H. Brune (2004). J. Appl. Phys. 95, 4251.

  54. N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nyvlt, and Y. Suzuki (1998). Phys. Rev. Lett. 81, 5229.

  55. M. Jamet, M. Négrier, V. Dupuis, J. Tuaillon-Combes, P. Mélinon, A. Pérez, W. Wernsdorfer, B. Barbara, and B. Baguenard (2001). J. Magn. Magn. Mater. 237, 293.

  56. B. Balamurugan, R. Skomski, B. Das, X. Z. Li, V. R. Shah, P. Manchanda, A. Kashyap, and D. J. Sellmyer (2012). J. Appl. Phys. 111, 07B532.

  57. DMol, v960, Biosym Technologies, 1996.

  58. G. Kresse and J. Hafner (1994). J. Phys. 6, 8245.

  59. J. P. Perdew, J. A. Chevary, S. H. Voske, K. Jackson, M. R. Pederson, and D.J. Singh (1992). Phys. Rev. B. 46, 6671.

  60. G. Kresse and J. Furthmüller (1996). Phys. Rev. B 54 11169.

  61. G. Kresse and D. Joubert (1999). Phys. Rev. B 59, 1758.

  62. P. E. Blöchl (1994). Phys. Rev. B 50 17953.

  63. R. J. Feng, X. H. Xu, and H. S. Wu (2007). J. Magn. Magn. Mater. 308, 131.

  64. A. Sebetci (2012). J. Magn. Magn. Mater. 324, 588.

  65. E. R. McNellis, J. Meyer, K. Reuter (2009), Phys. Rev. B, 80, 205414.

  66. S. Grimme (2006). J. Comput. Chem. 27, 1787.

  67. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg (2010). J. Chem. Phys. 132, 154104.

  68. A. Tkatchenko and M. Scheffler (2009). Phys. Rev. Lett. 102, 073005.

  69. H. J. Monkhorst and J. D. Pack (1976). Phys. Rev. B 13, 5188.

  70. H. K. Yuan, H. Chen, A. L. Kuang, B. Wu, and J. Z. Wang (2012). J Phys. Chem. A 116, 11673.

  71. H. K. Yuan, H. Chen, A. L. Kuang, C. L. Tian, and J. Z. Wang (2013). J. Chem. Phys. 139, 034314.

  72. H. K. Yuan, H. Chen, A. L. Kuang, and B. Wu (2013). J. Magn. Magn. Mater. 331, 7.

  73. S. H. Vosko, L. Wilk, and M. Nusair (1980). Can. J. Phys. 58, 1200.

  74. M. Methfessel and A. T. Paxton (1989). Phys. Rev. B 40, 3616.

  75. P. Blonski and J. Hafner (2009). Phys. Rev. B 79, 224418.

  76. T. O. Strandberg, C. M. Canali, and A. H. MacDonald (2007). Nat. Mater. 6, 648.

  77. K. Boufala, L. Fernández-Seivane, J. Ferrer, and M. Samah (2010). J. Magn. Magn. Mater. 322, 3428.

  78. D. Fritsch, K. Koepernik, M. Richter, and H. Eschrig (2008). J. Comput. Chem. 29, 2210.

  79. L. F. Seivane and J. Ferrer (2007). Phys. Rev. Lett. 99, 183401.

  80. S. Peredkov, M. Neeb, W. Eberhardt, J. Meyer, M. Tombers, H. Kampschulte, and G. Niedner-Schatteburg (2011). Phys. Rev. Lett. 107, 233401.

  81. W. F. Hu, H. K. Yuan, H. Chen, G. Z. Wang, and G. L. Zhang (2014). Phys. Lett. A 378, 198.

  82. S. Sahoo, A. Hucht, M. E. Gruner, G. Rollmann, P. Entel, A. Postnikov, J. Ferrer, L. Fernández-Seivane, M. Richter, D. Fritsch, and S. Sil (2010). Phys. Rev. B 82, 054418.

  83. O. Eriksson, M. S. S. Brooks, and B. Johansson (1990). Phys. Rev. B 41, 7311.

  84. R. Allenspach, M. Stampanoni, and A. Bischof (1990). Phys. Rev. Lett. 65, 3344.

  85. U. Pustogowa, J. Zabloudil, C. Uiberacker, C. Blaas, P. Weinberger, L. Szunyogh, and C. Sommers (1999). Phys. Rev. B 60, 414.

  86. P. Bruno (1989). Phys. Rev. B 39, 865.

  87. A. R. Mackintosh and O. K. Andersen, in M. Springford (ed.), Electrons at the Fermi Surface (Cambridge University Press, Cambridge, 1980), p.149.

  88. C. Andersson, B. Sanyal, O. Eriksson, L. Nordström, O. Karis, D. Arvanitis, T. Konishi, E. Holub-Krappe, and J. H. Dunn (2007). Phys. Rev. Lett. 99, 177207.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project Nos. 10904125 and 91121013), the National College Students’ Innovation and Entrepreneurship Training Program (Project No. 20130635060), and the Fundamental Research Funds for the Central Universities (Project No. XDJK2012B008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Cui, H., Wang, G.Q. et al. Deposition Morphology and Magnetism of Co, Pt Adatoms and Small CoPt Adclusters on Ni(100) Substrate. J Clust Sci 27, 947–964 (2016). https://doi.org/10.1007/s10876-016-0976-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-0976-0

Keywords

Navigation