Skip to main content
Log in

Lamp-Shaped Octametallic Lanthanide [Ln8SiO4] Clusters Based on a μ 4-Silicate-Bridge Core

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The employment of silicate ion, SiO4 4−, as a ligand in the coordination chemistry of lanthanides is reported. A series of octanuclear clusters of general formula [Ln8L8(C6H4NH2COO)4SiO4] (H2L = 2-{[(2-hydroxy-3-methoxy-phenyl)methylidene]amino}benzoic acid; Ln = Tb(1), Gd(2), Nd(3), Pr(4), Sm(5)) have been prepared via reactions of lanthanide nitrate salts, H2L and Na2SiO3. The metal skeleton shows rarely observed lamp-shaped conformation with eight metals being connected by a μ 4-silicate bridge. Variable-temperature, solid-state dc magnetic susceptibility studies were carried out on polycrystalline samples of 1 and 2. The data in the 2.0–300 K range reveal antiferromagnetic LnIII⋯LnIII exchange interactions in these two clusters. This work demonstrates the synthetic potential of combining Schiff-base ligands with silicate in the preparation of polymetallic lanthanide clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. I. L. Malaestean, A. Ellern, S. Baca, and P. Kögerler (2012). Chem. Commun. 48, 1499–1501.

    Article  CAS  Google Scholar 

  2. M. R. Bürgstein and P. W. Roesky (2000). Angew. Chem. Int. Ed. 39, 549–551.

    Article  Google Scholar 

  3. M. R. Bürgstein, M. T. Gamer, and P. W. Roesky (2004). J. Am. Chem. Soc. 126, 5213–5218.

    Article  Google Scholar 

  4. X.-J. Kong, Y. Wu, L.-S. Long, L.-S. Zheng, and Z. Zheng (2009). J. Am. Chem. Soc. 131, 6918–6919.

    Article  CAS  Google Scholar 

  5. J. Xu and K. N. Raymond (2000). Angew. Chem. Int. Ed. 39, 2745–2747.

    Article  CAS  Google Scholar 

  6. T. Kajiwara, H. Wu, T. Ito, N. Iki, and S. Miyano (2004). Angew. Chem. Int. Ed. 43, 1832–1835.

    Article  CAS  Google Scholar 

  7. R.-Y. Wang, Z.-P. Zheng, T.-Z. Jin, and R. J. Staple (1999). Angew. Chem. Int. Ed. 38, 1813–1815.

    Article  CAS  Google Scholar 

  8. J.-W. Cheng, J. Zhang, S.-T. Zheng, M.-B. Zhang, and G.-Y. Yang (2006). Angew. Chem. Int. Ed. 45, 73–77.

    Article  CAS  Google Scholar 

  9. H. Tsukube and S. Shinoda (2002). Chem. Rev. 102, 2389–2403.

    Article  CAS  Google Scholar 

  10. A. B. Canaj, D. I. Tzimopoulos, A. Philippidis, G. E. Kostakis, and C. J. Milios (2012). Inorg. Chem. 51, 7451–7453.

    Article  CAS  Google Scholar 

  11. L. G. Hubert-Pfalzgraf (1995). New J. Chem. 19, 727–750.

    CAS  Google Scholar 

  12. J. Wang, R. Wang, J. Yang, Z. Zheng, M. D. Carducci, T. Cayou, N. Peyghambarian, and G. E. Jabbour (2001). J. Am. Chem. Soc. 123, 6179–6180.

    Article  CAS  Google Scholar 

  13. G. L. Law, T. A. Pham, J. Xu, and K. N. Raymond (2012). Angew. Chem. 124, 2421–2424.

    Article  Google Scholar 

  14. T. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo, and M. Tada (2008). Chem. Rev. 108, 3795–3892.

    Article  Google Scholar 

  15. F. Pohlki and S. Doye (2003). Chem. Soc. Rev. 32, 104–114.

    Article  CAS  Google Scholar 

  16. P. W. Roesky, G. Canseco-Melchor, and A. Zulys (2004). Chem. Commun., 738–739.

  17. F. T. Edelmann (2009). Chem. Soc. Rev. 38, 2253–2268.

    Article  CAS  Google Scholar 

  18. P. W. Roesky and T. E. Müller (2003). Angew. Chem. Int. Ed. 42, 2708–2710.

    Article  CAS  Google Scholar 

  19. S. Yu and A. Watson (1999). Chem. Rev. 99, 2353–2378.

    Article  CAS  Google Scholar 

  20. L. Messerle, D. Nolting, L. Bolinger, A. H. Stolpen, B. F. Mullan, D. Swenson, and M. Madsen (2005). Acad. Radiol. 12, S46–S47.

    Article  Google Scholar 

  21. Y.-N. Guo, X.-H. Chen, S.-F. Xue, and J.-K. Tang (2012). Inorg. Chem. 51, 4035–4042.

    Article  CAS  Google Scholar 

  22. D. N. Woodruff, R. E. P. Winpenny, and R. A. Layfield (2013). Chem. Rev. 113, 5110–5148.

    Article  CAS  Google Scholar 

  23. P. Zhang, Y.-N. Guo, and J.-K. Tang (2013). Coord. Chem. Rev. 257, 1728–1763.

    Article  CAS  Google Scholar 

  24. J.-B. Peng, X.-J. Kong, Y.-P. Ren, L.-S. Long, R.-B. Huang, and L.-S. Zheng (2012). Inorg. Chem. 51, 2186–2190.

    Article  CAS  Google Scholar 

  25. R. J. Blagg, F. Tuna, E. J. L. McInnes, and R. E. P. Winpenny (2011). Chem. Commun. 47, 10587–10589.

    Article  CAS  Google Scholar 

  26. D. I. Alexandropoulos, S. Mukherjee, C. Papatriantafyllopoulou, C. P. Raptopoulou, V. Psycharis, V. Bekiari, G. Christou, and T. C. Stamatatos (2011). Inorg. Chem. 50, 11276–11278.

    Article  CAS  Google Scholar 

  27. F. Yang, Q. Zhou, G. Zeng, G.-H. Li, L. Gao, Z. Shi, and S.-H. Feng (2014). Dalton Trans. 43, 1238–1245.

    Article  CAS  Google Scholar 

  28. P.-P. Yang, X.-F. Gao, H.-B. Song, S. Zhang, X.-L. Mei, L.-C. Li, and D.-Z. Liao (2011). Inorg. Chem. 50, 720–722.

    Article  CAS  Google Scholar 

  29. Y.-L. Miao, J.-L. Liu, J.-Y. Li, J.-D. Leng, Y.-C. Ou, and M.-L. Tong (2011). Dalton Trans. 40, 10229–10236.

    Article  CAS  Google Scholar 

  30. H.-S. Ke, P. Gamez, L. Zhao, G.-F. Xu, S.-F. Xue, and J.-K. Tang (2010). Inorg. Chem. 49, 7549–7557.

    Article  CAS  Google Scholar 

  31. A. S. R. Chesman, D. R. Turner, B. Moubaraki, K. S. Murray, G. B. Deacon, and S. R. Batten (2012). Dalton Trans. 41, 3751–3757.

    Article  CAS  Google Scholar 

  32. L. Zhao, S.-F. Xue, and J.-K. Tang (2012). Inorg. Chem. 51, 5994–5996.

    Article  CAS  Google Scholar 

  33. M. U. Anwar, S. S. Tandon, L. N. Dawe, F. Habib, M. Murugesu, and L. K. Thompson (2012). Inorg. Chem. 51, 1028–1034.

    Article  CAS  Google Scholar 

  34. P.-H. Lin, W.-B. Sun, M.-F. Yu, G.-M. Li, P.-F. Yan, and M. Murugesu (2011). Chem. Commun. 47, 10993–10995.

    Article  CAS  Google Scholar 

  35. Y.-Z. Zheng, M. Evangelisti, and R. E. P. Winpenny (2011). Angew. Chem. Int. Ed. 50, 3692–3695.

    Article  CAS  Google Scholar 

  36. Y. Z. Zheng, M. Evangelisti, F. Tuna, and R. E. P. Winpenny (2012). J. Am. Chem. Soc. 134, 1057–1065.

    Article  CAS  Google Scholar 

  37. H.-Q. Tian, L. Zhao, Y.-N. Guo, Y. Guo, J.-K. Tang, and Z.-L. Liu (2012). Chem. Commun. 48, 708–710.

    Article  CAS  Google Scholar 

  38. S.-X. She, M. J. Zaworotko, W. Liu, Z.-X. Zhang, and Y. H. Li (2013). CrystEngComm 15, 5003–5006.

    Article  CAS  Google Scholar 

  39. S.-X. She, Y.-M. Chen, M. J. Zaworotko, W. Liu, Y.-Y. Cao, J. Wu, and Y. H. Li (2013). Dalton Trans. 42, 10433–10438.

    Article  CAS  Google Scholar 

  40. G. M. Sheldrick (2008). Acta Crystallogr. Sect. A 64, 112–122.

    Article  CAS  Google Scholar 

  41. M. Nishiura, Z. M. Hou, and Y. Wakatsuki (2004). Organometallics 23, 1359–1368.

    Article  CAS  Google Scholar 

  42. M. Zimmermann, N. A. Froystein, A. Fischbach, P. Sirsch, H. M. Dietrich, K. W. Törnroos, E. Herdtweck, and R. Anwander (2007). Chem. Eur. J. 13, 8784–8800.

    Article  CAS  Google Scholar 

  43. E. L. Roux, O. Michel, H. Sommerfeldt, Y.-C. Liang, C. Maichle-Mössmer, K. W. Törnroos, and R. Anwander (2010). Dalton Trans. 39, 8552–8559.

    Article  Google Scholar 

  44. S.-Z. Li, D.-D. Zhang, Y.-Y. Guo, P.-T. Ma, J.-W. Zhao, J.-P. Wang, and J.-Y. Niu (2011). Eur. J. Inorg. Chem. 35, 5397–5404.

    Article  Google Scholar 

  45. M.-L. Wei, C. He, Q.-Z. Sun, Q.-J. Meng, and C.-Y. Duan (2007). Inorg. Chem. 46, 5957–5966.

    Article  CAS  Google Scholar 

  46. M. U. Anwar, S. S. Tandon, L. N. Dawe, F. Habib, M. Murugesu, and L. K. Thompson (2012). Inorg. Chem. 51, 1028–1034.

    Article  CAS  Google Scholar 

  47. V. Chandrasekhar, P. Bag, and E. Colacio (2013). Inorg. Chem. 52, 4562–4570.

    Article  CAS  Google Scholar 

  48. W.-H. Fang, L. Cheng, L. Huang, and G.-Y. Yang (2013). Inorg. Chem. 52, 6–8.

    Article  CAS  Google Scholar 

  49. M.-X. Yao, Q. Zheng, F. Gao, Y.-Z. Li, Y. Song, and J.-L. Zuo (2012). Dalton Trans. 41, 13682–13690.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from Natural Science Foundation of China (21272167), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahong Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, SX., Chen, Y., Gao, D. et al. Lamp-Shaped Octametallic Lanthanide [Ln8SiO4] Clusters Based on a μ 4-Silicate-Bridge Core. J Clust Sci 27, 691–701 (2016). https://doi.org/10.1007/s10876-016-0974-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-0974-2

Keywords

Navigation