Skip to main content
Log in

Effect of Aqueous Ablation Environment on the Characteristics of ZnO Nanoparticles Produced by Laser Ablation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Effect of ablation environment on the nature of ZnO nanoparticles produced by laser ablation method in liquid medium is investigated experimentally. High purity Zn plate was irradiated by the fundamental beam of a Q-switch Nd-YAG laser in cetyltrimethylammonium bromide (CTAB), acetone, sodium dodecyl sulfate and water. Produced nanoparticles were characterized by UV–Vis absorption spectroscopy, transmission electron microscopy, scanning electron microscopy, X-ray diffraction spectrum, and fourier transform infrared spectroscopy. Results show that the highest rate of ablation occurs in CTAB. Largest nanoparticles are produced in acetone, and crystallinity of nanoparticles produced in CTAB is higher than other samples. CTAB surfactant changed the morphology of ZnO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Solati, M. Mashayekh, and D. Dorranian (2013). Appl. Phys. A 112, 689–694.

    Article  CAS  Google Scholar 

  2. E. Solati and D. Dorranian (2015). J. Clust. Sci. 26, 727–742.

    Article  CAS  Google Scholar 

  3. S. C. Singh, R. K. Swarnkar, and R. Gopal (2010). Bull. Mater. Sci. 33, 21–26.

    Article  CAS  Google Scholar 

  4. D. Dorranian, E. Solati, and L. Dejam (2012). Appl. Phys. A 109, 307–314.

    Article  CAS  Google Scholar 

  5. E. Solati, L. Dejam, and D. Dorranian (2014). Opt. Laser Technol. 58, 26–32.

    Article  CAS  Google Scholar 

  6. H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, and S. Yang (2007). J. Phys. Chem. B 111, 14311–14317.

    Article  CAS  Google Scholar 

  7. H. Zeng, W. Cai, J. Hu, G. Duan, P. Liu, and Y. Li (2006). Appl. Phys. Lett. 88, 171910.

    Article  Google Scholar 

  8. Ch He, T. Sasaki, Y. Shimizu, and N. Koshizaki (2008). Appl. Surf. Sci. 254, 2196–2202.

    Article  CAS  Google Scholar 

  9. Ch He, T. Sasaki, H. Usui, Y. Shimizu, and N. Koshizaki (2008). J. Photochem. Photobiol. A 191, 66–73.

    Article  Google Scholar 

  10. J. M. Cho, J. K. Song, and S. M. Park (2009). Bull. Korean Chem. Soc. 30, 1615–1618.

    Google Scholar 

  11. S. C. Singh and R. Gopal (2007). Bull. Mater. Sci. 30, 291–293.

    Article  CAS  Google Scholar 

  12. H. Usui, Y. Shimizu, T. Sasaki, and N. Koshizaki (2005). J. Phys. Chem. B 109, 120–124.

    Article  CAS  Google Scholar 

  13. K. K. Kim, D. Kim, S. K. Kim, S. M. Park, and J. K. Song (2011). Chem. Phys. Lett. 511, 116–120.

    Article  CAS  Google Scholar 

  14. S. Ibrahimkutty, P. Wagener, A. Menzel, A. Plech, and S. Barcikowski (2012). Appl. Phys. Lett. 101, 103104.

    Article  Google Scholar 

  15. A. Mene´ndez-Manjo´n, B. N. Chichkov, and S. Barcikowski (2010). J. Phys. Chem. C 114, 2499–2504.

    Article  Google Scholar 

  16. A. Hahn, S. Barcikowski, and B. N. Cjhchkov (2008). J. Laser Micro Nanoeng. 3, 73–77.

    Article  CAS  Google Scholar 

  17. B. Srinivasa Rao, B. Rajesh Kumar, V. Rajagopal Reddy, T. Subba Rao, and G. Venkata Chalapathi (2011). Chalcogenide Lett. 8, 39–44.

    CAS  Google Scholar 

  18. H. Zeng, W. Cai, Y. Li, J. Hu, and P. Liu (2005). J. Phys. Chem. B 109, 18260–18266.

    Article  CAS  Google Scholar 

  19. Y. Ishikawa, Y. Shimizu, T. Sasaki, and N. Koshizaki (2006). J. Colloid Interface Sci. 300, 612–615.

    Article  CAS  Google Scholar 

  20. S. Faramarzi, M. R. Jalilian-Nosrati, and S. Barcikowski (2010). J. Theor. Appl. Phys. 4, 6–9.

    Google Scholar 

  21. R. Marsalek (2014). APCBEE Proc. 9, 13–17.

    Article  CAS  Google Scholar 

  22. Q. A. Drmosh, M. A. Gondal, Z. H. Yamani, and T. A. Saleh (2010). Appl. Surf. Sci. 256, 4661–4666.

    Article  CAS  Google Scholar 

  23. M. A. Gondal, Q. A. Drmosh, Z. H. Yamani, and T. A. Saleh (2009). Appl. Surf. Sci. 256, 298–304.

    Article  CAS  Google Scholar 

  24. R. K. Thareja and S. Shukla (2007). Appl. Surf. Sci. 253, 8889–8895.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Dorranian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, M., Solati, E., Darvishi, S. et al. Effect of Aqueous Ablation Environment on the Characteristics of ZnO Nanoparticles Produced by Laser Ablation. J Clust Sci 27, 127–138 (2016). https://doi.org/10.1007/s10876-015-0915-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0915-5

Keywords

Navigation