Skip to main content
Log in

Laser-Induced Synthesis of Au–Ag Alloy Nanoparticles in Polyvinylpyrrolidone (C6H9NO)n Solution

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Au–Ag alloy nanoparticles (NPs) were prepared in Polyvinylpyrrolidone (C6H9NO)n (PVP) solution by laser irradiation method. Au and Ag NPs were separately prepared in PVP solution by laser ablation. The mixture of Au and Ag NP colloids was irradiated by the second harmonic (532 nm) of pulsed Nd:YAG laser with different laser fluencies and exposure times. The Plasmon resonance absorption spectrum, morphology and structure of Au–Ag alloy NPs were observed by a UV-2450 spectrometer (Shimadzu), a high resolution transmission electron microscope (TEM Tecnai G2 20 S-TWIN/FEI). The results show that the resulting Au–Ag alloy NPs are homogeneous alloyed particles and dispersed in PVP solution with average diameter of 4 nm without sintered structure. Au–Ag alloy NPs were produced by 532 nm laser with different Au/Ag molar ratio of the initial mixed solution to give the plasmon resonance absorption peak in the intermediate positions between about 420 and 520 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Jha and A. K. Sharma (2009). J. Opt. A 11, 045502.

    Article  Google Scholar 

  2. A. K. Sharma and B. D. Gupta (2006). Nanotechnology 17, 124.

    Article  CAS  Google Scholar 

  3. R. A. Alvarez-Puebla and J. P. Bravo-Vasquez (2009). J. Colloid Interface Sci. 333, 237.

    Article  CAS  Google Scholar 

  4. E. Hao, S. Y. Li, R. C. Bailey, S. L. Zou, G. C. Schatz, and J. T. Hupp (2004). J. Phys. Chem. B108, 1224.

    Article  Google Scholar 

  5. J. Hodak, A. Henglein, M. Giersig, and G. Hartland (2000). J. Phys. Chem. B104, 11708.

    Article  Google Scholar 

  6. J. Abid, H. Girault, P. Brevet (2001). Chem. Commun. 829.

  7. A. N. Shipway, E. Katz, and I. Willner (2000). ChemPhysChem 1, 18.

    Article  CAS  Google Scholar 

  8. L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo (2000). Langmuir 16, 9722.

    Article  CAS  Google Scholar 

  9. V. Vadlapudi and D. S. V. G. K. Kaladhar (2014). Middle East J. Sci. Res. 19, (6), 834–842.

    Google Scholar 

  10. G. Zhang, et al. (2013). RSC Adv 3, 1878–1884.

    Article  CAS  Google Scholar 

  11. D. Alloyeau, C. Mottet, C. Ricolleau Nanoalloys: Systhesis, Structure and Properties (Springer, London, 2012). ISBN 978-1-4471-4014-6. http://www.springer.com/series/4288.

  12. S. Link, Z. L. Wang, and M. A. El-Sayed (1999). J. Phys. Chem. B 103, 3529.

    Article  CAS  Google Scholar 

  13. Z. Jin, W. Jessica, D. Stephane, K. Christopher, J. Zygmunt, Y. Jakubek, D. Yves, P. Michael, and S. Benoit (2003). J. Phys. Chem. B107, 6920–6923.

    Google Scholar 

  14. I. Lee, S.W. Han, K. Kim (2001). Chem. Commun. 1782.

  15. Z. Peng, et al. (2006). J. Phys. Chem. B 110, 2549–2554.

    Article  CAS  Google Scholar 

  16. A. Menéndez-Manjón and S. Barcikowski (2011). Appl. Surf. Sci. 257, 4285–4290. doi:10.1016/j.apsusc.2010.12.037.

    Article  Google Scholar 

  17. S. Barcikowski et al. (2014). Beilstein J. Nanotechnol. 5, 1523.

  18. A. Neumeister, et al. (2014). Phys. Chem. Chem. Phys. 16, 23671.

    Article  CAS  Google Scholar 

  19. F. Calvo Nanoalloys from Fundamentals to Emergent Applications (Elsevier, Burlington, 2013), p. 39.

    Google Scholar 

  20. G. Compagnini, E. Messina, O. Puglisi, R. S. Cataliotti, and V. Nicolosi (2008). Chem. Phys. Lett. 457, 386–390.

    Article  CAS  Google Scholar 

  21. Y. H. Chen, C.-S. Yeh (2001). Chem. Commun. 371.

  22. J. C. Alonso, R. Diamant, P. Castillo, M. C. AcostaGarcia, N. Batina, and E. HaroPoniatowskiet (2009). Appl. Surf. Sci. 255, 4933.

    Article  CAS  Google Scholar 

  23. F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola (2013). J. Phys. Chem. C 117, 13217–13229. doi:10.1021/jp400599g.

    Article  CAS  Google Scholar 

  24. S. Link and M. A. Ei-Sayed (2003). Annu. Rev. Phys. Chem. 54, 331–366. doi:10.1146/annurev.physchem.54.011002.103759.

    Article  CAS  Google Scholar 

  25. T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter (2002). J. Am. Chem. Soc. 124, 11989.

    Article  CAS  Google Scholar 

  26. T. H. Chang, Y. C. Chang, F. H. Ko, and F. K. Liu (2013). Int. J. Electrochem. Sci. 8, 6889–6899.

    CAS  Google Scholar 

  27. D. D. Evanoff and G. Chumanov (2004). J. Phys. Chem. B 108, 3957.

    Google Scholar 

  28. D. D. Evanoff and G. Chumanov (2005). ChemPhysChem 6, 122.

    Article  Google Scholar 

  29. A. Dawson and P. V. Kamat (2001). J. Phys. Chem. B 105, 960.

    Article  CAS  Google Scholar 

  30. F. Mafune, J. Kohno, Y. Takeda, and T. Kondow (2002). J. Phys. Chem. B106, 8555.

    Article  Google Scholar 

  31. T. Tsuji, D. H. Thang, Y. Okazaki, M. Nakanishi, Y. Tsuboi, and M. Tsuji (2008). Appl. Surf. Sci. 254, (16), 5224–5230.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Vietnam National University, Hanoi (VNU-HN) in the project QGTD 13.03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to The Binh Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.B., Nguyen, T.D., Tran, T.D. et al. Laser-Induced Synthesis of Au–Ag Alloy Nanoparticles in Polyvinylpyrrolidone (C6H9NO)n Solution. J Clust Sci 26, 1787–1799 (2015). https://doi.org/10.1007/s10876-015-0877-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0877-7

Keywords

Navigation