Skip to main content
Log in

Effect of Laser Pulse Energy on the Characteristics of Cu Nanoparticles Produced by Laser Ablation Method in Acetone

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The effect of laser fluence on the characteristics of Cu nanoparticles, prepared by laser ablation method, is investigated experimentally. 1–6 nm Cu nanoparticles were synthesized by the pulsed laser ablation of a high purity copper bulk in acetone. Effect of laser fluence on the size, morphology and structure of produced nanoparticles has been studied. Pulses of a Q-switched Nd:YAG laser of 1,064 nm wavelengths at 7 ns pulse width at different fluences was employed to irradiate the Cu target in acetone. The UV–Vis–NIR absorption spectra of nanoparticles exhibit surface plasmon resonance absorption peak in the visible region. TEM and SEM micrographs indicate that with increasing the laser fluence the average size of spherical Cu nanoparticles is decreased and only the sample which is produced with the highest fluence shows exceptional behavior. It is found that Cu nanoparticles exhibit photoluminescence emission with single peak due to its interband transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, and I. Shah (2005). J. Nanosci. Nanotechnol. 5, 2.

    Article  Google Scholar 

  2. A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, and M. Suzuki (2004). Appl. Phys. A 79, 803.

    Article  CAS  Google Scholar 

  3. A. Nath and A. Khare (2011). Appl. Phys. 110, 043111.

    Article  Google Scholar 

  4. P. Mulvaney, T. Linnert, and A. Henglein (2008). J. Phys. Chem. 95, 20.

    Google Scholar 

  5. H. Zhu, C. Zhang, and Y. Yin (2005). Nanotechnology 16, 3079.

    Article  CAS  Google Scholar 

  6. G. Larsen and S. Noriega (2004). Appl. Catal. A Gen. 278, 73.

    Article  CAS  Google Scholar 

  7. H. Wang, Y. Huang, Z. Tan, and X. Hu (2004). Anal. Chim. Acta 526, 13.

    Article  CAS  Google Scholar 

  8. M. K. Patel, B. J. Nagare, D. M. Bayul, S. K. Haram, and D. C. Kothari (2005). Surf. Coat. Technol. 196, 96.

    Article  CAS  Google Scholar 

  9. Y. Gotoh, R. Igarashi, Y. Ohkoshi, M. Nagura, K. Akamatsu, and S. Deki (2000). J. Mater. Chem. 10, 2548.

    Article  CAS  Google Scholar 

  10. T. N. Rostovshchikov, V. V. Smirnov, V. M. Kozhevin, D. A. Yavsin, M. A. Zabelin, I. N. Yassievich, and S. A. Gurevich (2005). Appl. Catal. A Gen. 296, 70.

    Article  Google Scholar 

  11. A. Quaranta, R. Ceccato, C. Menato, L. Pederiva, N. Capra, R. D. Maschio, and J. Non-Cryst (2004). Solids 671, 345–346.

    Google Scholar 

  12. A. A. Ponce and K. J. Klabunde (2005). J. Mol. Catal. A Chem. 225, 1.

    Article  CAS  Google Scholar 

  13. Y.-H. Yeh, M.-S. Yeh, Y. P. Lee, and C.-S. Yeh (1998). Chem Lett 11, 1183.

    Google Scholar 

  14. M.-S. Yeh, Y.-S. Yang, Y.-R. Lee, H.-F. Lee, Y.-H. Yeh, and C.-S. Yeh (1999). Phys. Chem. B 103, 6851.

    Article  CAS  Google Scholar 

  15. R. M. Tilaki, A. Iraji zad, and S. M. Mahdavi (2008). Appl. Phys. A 88, 415.

    Article  Google Scholar 

  16. P. V. Kazakevich, V. V. Voronov, A. V. Simakin, and G. A. Shafeev (2006). Quantum Electronics 34, (10), 951.

    Article  Google Scholar 

  17. T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc, and M. C. Dang (2011). Adv. Nat. Sci. Nanosci. Nanotechnol 2, 015009.

    Article  Google Scholar 

  18. K. Amikura, T. Kimura, M. Hamada, N. Yokoyama, J. Miyazaki, and Y. Yamada (2008). Appl. Surf. Sci. 254, 6976.

    Article  CAS  Google Scholar 

  19. M. A. Gondal, Q. A. Drmosh, Z. H. Yamani, and T. A. Saleh (2009). Appl. Surf. Sci. 256, 298.

    Article  CAS  Google Scholar 

  20. D. Dorranian, L. Dejam, A. H. Sari, and A. Hojabri (2009). J Theoretical Appl Phys 3–3, 37–41.

    Google Scholar 

  21. J. Tauc, R. Grigorovici, and A. Vancu (1996). Phys. State. Sol. 15, 627.

    Google Scholar 

  22. G. W. Yang (2007). Prog. Mater. Sci. 52, 648.

    Article  CAS  Google Scholar 

  23. N. Haram and N. Ahmad (2013). Appl Phys A 111, 1131–1137.

    Article  CAS  Google Scholar 

  24. N. Mirghassemzadeh, M. Ghamkhari, and D. Dorranian (2013). Soft Nanosci. Lett. 3, 101–106.

    Article  CAS  Google Scholar 

  25. B. Xu, R. G. Song, and C. Wang (2012). Adv. Mater. Res. 415–417, 747–750.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Dorranian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorranian, D., Ahmadi Afshar, S.A., Tahmasebi, N. et al. Effect of Laser Pulse Energy on the Characteristics of Cu Nanoparticles Produced by Laser Ablation Method in Acetone. J Clust Sci 25, 1147–1156 (2014). https://doi.org/10.1007/s10876-014-0696-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0696-2

Keywords

Navigation